Abstract: Observations of high redshift galaxies have revealed a multitude of large clumpy rapidly star-forming galaxies. Their formation scenario and their link to present day spirals is still unknown. In this Letter we perform adaptive mesh refinement simulations of disk formation in a cosmological context that are unrivalled in terms of mass and spatial resolution. We find that the so called "chain-galaxies" and "clump-clusters" are a natural outcome of early epochs of enhanced gas accretion from cold dense streams as well as tidally and ram-pressured stripped material from minor mergers and satellites. Through interaction with the hot halo gas, this freshly accreted cold gas settles into a large disk-like system, not necessarily aligned to an older stellar component, that undergoes fragmentation and subsequent star formation, forming large clumps in the mass range 10^7-10^9 M_sun. Galaxy formation is a complex process at this important epoch when most of the central baryons are being acquired through a range of different mechanisms - we highlight that a rapid mass loading epoch is required to fuel the fragmentation taking place in the massive arms in the outskirts of extended disks, an accretion mode that occurs naturally in the hierarchical assembly process at early epochs.
Comment: Minor revision of the text, accepted for publication in MNRAS Letters. A version with high-resolution figures can be found at http://www-theorie.physik.unizh.ch/~agertz/CLUMPS
No Comments.