Contributors: Centre for Ecological and Evolutionary Synthesis (CEES); Department of Biosciences [Oslo]; Faculty of Mathematics and Natural Sciences [Oslo]; University of Oslo (UiO)-University of Oslo (UiO)-Faculty of Mathematics and Natural Sciences [Oslo]; University of Oslo (UiO)-University of Oslo (UiO); Universität Wien = University of Vienna; Department of Botany and Biodiversity Research, University of Vienna; Université de Vienne; Centre de Biologie pour la Gestion des Populations (UMR CBGP); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [Occitanie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro); Department of Primatology [Leipzig]; Max Planck Institute for Evolutionary Anthropology [Leipzig]; Max-Planck-Gesellschaft-Max-Planck-Gesellschaft; Max Planck Institute for Evolutionary Biology; Max-Planck-Gesellschaft; Università degli studi di Torino = University of Turin (UNITO); Department of Agriculture, Forest and Food Sciences; University of Agder (UIA); This study was supported by Marie Curie Intra European Fellowships (FP7-PEOPLE-IEF-2010, European Commission; project no. 252252 to E.T.) and by the Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway.; European Project: 252252,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,REHYSTRIX(2011); University of Vienna [Vienna]; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro); Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro); University of Turin; Università degli studi di Torino (UNITO); Department of Biosciences Oslo; Faculty of Mathematics and Natural Sciences Oslo; University of Oslo (UiO)-University of Oslo (UiO)-Faculty of Mathematics and Natural Sciences Oslo; University of Vienna Vienna; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD France-Sud )-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro); Department of Primatology Leipzig; Max Planck Institute for Evolutionary Anthropology Leipzig; Trucchi, Emiliano; Facon, Benoit; Gratton, Paolo; Mori, Emiliano; Stenseth, Nils Chr; Jentoft, Sissel; Trucchi, E; Facon, B; Gratton, P; Mori, E; Stenseth, Nc; Jentoft, S
Abstract: Studying the evolutionary dynamics of an alien species surviving and continuing to expand after several generations can provide fundamental information on the relevant features of clearly successful invasions. Here, we tackle this task by investigating the dynamics of the genetic diversity in invasive crested porcupine (Hystrix cristata) populations, introduced to Italy about 1500 years ago, which are still growing in size, distribution range and ecological niche. Using genome‐wide RAD markers, we describe the structure of the genetic diversity and the demographic dynamics of the H. cristata invasive populations and compare their genetic diversity with that of native African populations of both H. cristata and its sister species, H. africaeaustralis. First, we demonstrate that genetic diversity is lower in both the invasive Italian and the North Africa source range relative to other native populations from sub‐Saharan and South Africa. Second, we find evidence of multiple introduction events in the invasive range followed by very limited gene flow. Through coalescence‐based demographic reconstructions, we also show that the bottleneck at introduction was mild and did not affect the introduced genetic diversity. Finally, we reveal that the current spatial expansion at the northern boundary of the range is following a leading‐edge model characterized by a general reduction of genetic diversity towards the edge of the expanding range. We conclude that the level of genome‐wide diversity of H. cristata invasive populations is less important in explaining its successful invasion than species‐specific life‐history traits or the phylogeographic history in the native source range.
No Comments.