Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Rapid online analysis of n-alkanes in gaseous streams via APCI mass spectrometry

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Springer Science and Business Media LLC, 2024.
    • Publication Date:
      2024
    • Abstract:
      Online monitoring of dynamic chemical processes involving a wide volatility range of hydrocarbon species is challenging due to long chromatographic measurement times. Mass spectrometry (MS) overcomes chromatographic delays. However, the analysis of n-alkane mixtures by MS is difficult because many fragment ions are formed, which leads to overlapping signals of the homologous series. Atmospheric pressure chemical ionization (APCI) is suitable for the analysis of saturated hydrocarbons and is the subject of current research. Still, although APCI is a “soft ionization” technique, fragmentation is typically inevitable. Moreover, it is usually applied for liquid samples, while an application for online gas-phase monitoring is widely unexplored. Here, we present an automated APCI-MS method for an online gas-phase analysis of volatile and semi-volatile n-alkanes. Mass spectra for n-heptane and n-decane reveal [M-H]+, [M-3H]+ and [M-3H+H2O]+ as abundant ions. While [M-H]+ and [M-3H]+ show an excessive fragmentation pattern to smaller CnH2n+1+ and CnH2n-1+ cations, [M-3H+H2O]+ is the only relevant signal within the CnH2n+1O+ ion group, i.e., no chain cleavage is observed. This makes [M-3H+H2O]+ an analyte-specific ion that is suitable for the quantification of n-alkane mixtures. A calibration confirms the linearity of C7 and C10 signals up to concentrations of ~1000–1500 ppm. Moreover, validated concentration profiles are measured for a binary C7/C10 mixture and a five-alkane C7/C10/C12/C14/C20 mixture. Compared to the 40-min sampling interval of the reference gas chromatograph, MS sampling is performed within 5 min and allows dynamic changes to be monitored. Graphical Abstract
    • ISSN:
      1618-2650
      1618-2642
    • Accession Number:
      10.1007/s00216-024-05182-3
    • Rights:
      CC BY
      URL: http://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (http://creativecommons.org/licenses/by/4.0/) .
    • Accession Number:
      edsair.doi.dedup.....79b3deaf72150ae98fcf3394511dfea1