Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Single- and multiple-trait quantitative trait locus analyses for seed oil and protein contents of soybean populations with advanced breeding line background

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Springer Science and Business Media LLC, 2024.
    • Publication Date:
      2024
    • Abstract:
      Soybean seed oil and protein contents are negatively correlated, posing challenges to enhance both traits simultaneously. Previous studies have identified numerous oil and protein QTLs via single-trait QTL analysis. Multiple-trait QTL methods were shown to be superior but have not been applied to seed oil and protein contents. Our study aimed to evaluate the effectiveness of single- and multiple-trait multiple interval mapping (ST-MIM and MT-MIM, respectively) for these traits using three recombinant inbred line populations from advanced breeding line crosses tested in four environments. Using original and simulated data, we found that MT-MIM did not outperform ST-MIM for our traits with high heritability (H2 > 0.84). Empirically, MT-MIM confirmed only five out of the seven QTLs detected by ST-MIM, indicating single-trait analysis was sufficient for these traits. All QTLs exerted opposite effects on oil and protein contents with varying protein-to-oil additive effect ratios (-0.4 to -4.8). We calculated the economic impact of the allelic variations via estimated processed values (EPV) using the National Oilseed Processors Association (NOPA) and High Yield + Quality (HY + Q) methods. Oil-increasing alleles had positive effects on both EPVNOPA and EPVHY+Q when the protein-to-oil ratio was low (-0.4 to -0.7). However, when the ratio was high (-4.1 to -4.8), oil-increasing alleles increased EPVNOPA and decreased EPVHY+Q, which penalizes low protein meal. In conclusion, single-trait QTL analysis is adequately effective for high heritability traits like seed oil and protein contents. Additionally, the populations’ elite pedigrees and varying protein-to-oil ratios provide potential lines for further yield assessment and direct integration into breeding programs.
    • ISSN:
      1572-9788
      1380-3743
    • Accession Number:
      10.1007/s11032-024-01489-2
    • Rights:
      CC BY
      URL: http://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (http://creativecommons.org/licenses/by/4.0/) .
    • Accession Number:
      edsair.doi.dedup.....7ec15de381ffaee307996c067547857e