Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Pre‐treatment with D942, a furancarboxylic acid derivative, increases desiccation tolerance in an anhydrobiotic tardigrade Hypsibius exemplaris

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Wiley, 2020.
    • Publication Date:
      2020
    • Abstract:
      The tardigrade Hypsibius exemplaris has low tolerance to direct exposure to 50% relative humidity (RH) without preconditioning in a high RH environment. However, tardigrades pre‐treated with D942, a furancarboxylic acid derivative, partially acquired desiccation tolerance against 50% or even lower RH without preconditioning. Proteomic analysis of tardigrades treated with D942 indicated that responses to oxidative stress may be one of the underlying molecular mechanisms.
      The tardigrade Hypsibius exemplaris can undergo anhydrobiosis. Several chemicals that inhibit successful anhydrobiosis in H. exemplaris have been identified, and these chemicals inhibit the activity of signaling molecules. In the present study, we investigated whether upregulation of the activity of these signaling molecules could improve desiccation tolerance of H. exemplaris. Pre‐treatment with an indirect activator of AMP‐activated protein kinase [AMPK; which directly inhibits mammalian NAD(P)H dehydrogenase [quinone] 1 [NQO1] of mitochondrial complex I (D942)] significantly improved desiccation tolerance of H. exemplaris, whereas a direct activator of AMPK did not. To elucidate the underlying molecular mechanisms, we examined the proteome of tardigrades treated with D942. Two proteins, putative glutathione S‐transferase and pirin‐like protein, were upregulated by treatment. Both of these proteins are known to be associated with the response to oxidative stress. One of the downregulated proteins was serine/threonine‐proteinphosphatase 2A (PP2A) 65‐kDa regulatory subunit A alpha isoform, and it is interesting to note that PP2A activity was previously suggested to be required for successful anhydrobiosis in H. exemplaris. Taken together, our results suggest that D942 treatment may partially induce responses common to those of desiccation stress. The identification of a chemical that improves desiccation tolerance of H. exemplaris may facilitate further investigation into desiccation tolerance mechanisms.
    • ISSN:
      2211-5463
    • Rights:
      OPEN
    • Accession Number:
      edsair.doi.dedup.....86e791a158fdda183dbf57d2560d2a39