Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Converse Lyapunov results for stability of switched systems with average dwell-time

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Tanwani, Aneel; Università degli Studi di Udine - University of Udine [Italie]; Équipe Méthodes et Algorithmes en Commande (LAAS-MAC); Laboratoire d'analyse et d'architecture des systèmes (LAAS); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP); Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)
    • Publication Information:
      Preprint
    • Publication Information:
      EDP Sciences, 2025.
    • Publication Date:
      2025
    • Abstract:
      This article provides a characterization of stability for switched nonlinear systems under average dwell-time constraints, in terms of necessary and sufficient conditions involving multiple Lyapunov functions. Earlier converse results focus on switched systems with dwell-time constraints only, and the resulting inequalities depend on the flow of individual subsystems. With the help of a counterexample, we show that a lower bound that guarantees stability for dwell-time switching signals may not necessarily imply stability for switching signals with same lower bound on the average dwell-time. Based on these two observations, we provide a converse result for the average dwell-time constrained systems in terms of inequalities which do not depend on the flow of individual subsystems and are easier to check. The particular case of linear switched systems is studied as a corollary to our main result.
    • File Description:
      application/pdf
    • ISSN:
      1262-3377
      1292-8119
    • Accession Number:
      10.1051/cocv/2025006
    • Accession Number:
      10.48550/arxiv.2405.03560
    • Rights:
      EDP Sciences Copyright and Publication Licensing Policy
      arXiv Non-Exclusive Distribution
    • Accession Number:
      edsair.doi.dedup.....9fa01fa2aef67d4efee86476e1867685