Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Forced treadmill running reduces systemic inflammation yet worsens upper limb discomfort in a rat model of work-related musculoskeletal disorders

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Springer Science and Business Media LLC, 2019.
    • Publication Date:
      2019
    • Abstract:
      BackgroundMusculoskeletal disorders can result from prolonged repetitive and/or forceful movements. Performance of an upper extremity high repetition high force task increases serum pro-inflammatory cytokines and upper extremity sensorimotor declines in a rat model of work-related musculoskeletal disorders. Since one of the most efficacious treatments for musculoskeletal pain is exercise, this study investigated the effectiveness of treadmill running in preventing these responses.MethodsTwenty-nine young adult female Sprague-Dawley rats were used. Nineteen were trained for 5 weeks to pull a lever bar at high force (15 min/day). Thirteen went on to perform a high repetition high force reaching and lever-pulling task for 10 weeks (10-wk HRHF; 2 h/day, 3 days/wk). From this group, five were randomly selected to undergo forced treadmill running exercise (TM) during the last 6 weeks of task performance (10-wk HRHF+TM, 1 h/day, 5 days/wk). Results were compared to 10 control rats and 6 rats that underwent 6 weeks of treadmill running following training only (TR-then-TM). Voluntary task and reflexive sensorimotor behavioral outcomes were assessed. Serum was assayed for inflammatory cytokines and corticosterone, reach limb median nerves for CD68+ macrophages and extraneural thickening, and reach limb flexor digitorum muscles and tendons for pathological changes.Results10-wk HRHF rats had higher serum levels of IL-1α, IL-1β and TNFα, than control rats. In the 10-wk HRHF+TM group, IL-1β and TNFα were lower, whereas IL-10 and corticosterone were higher, compared to 10-wk HRHF only rats. Unexpectedly, several voluntary task performance outcomes (grasp force, reach success, and participation) worsened in rats that underwent treadmill running, compared to untreated 10-wk HRHF rats. Examination of forelimb tissues revealed lower cellularity within the flexor digitorum epitendon but higher numbers of CD68+ macrophages within and extraneural fibrosis around median nerves in 10-wk HRHF+TM than 10-wk HRHF rats.ConclusionsTreadmill running was associated with lower systemic inflammation and moderate tendinosis, yet higher median nerve inflammation/fibrosis and worse task performance and sensorimotor behaviors. Continued loading of the injured tissues in addition to stress-related factors associated with forced running/exercise likely contributed to our findings.
    • ISSN:
      1471-2474
    • Accession Number:
      10.1186/s12891-020-3085-z
    • Accession Number:
      10.21203/rs.2.11415/v3
    • Accession Number:
      10.21203/rs.2.11415/v2
    • Rights:
      CC BY
    • Accession Number:
      edsair.doi.dedup.....a60184377354e6bf409f90ac80e31790