Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Model order reduction by convex displacement interpolation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Optimad engineering [Torino]; Modeling Enablers for Multi-PHysics and InteractionS (MEMPHIS); Institut de Mathématiques de Bordeaux (IMB); Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria); Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS); European Project: 872442,ARIA(2019); Inria Bordeaux - Sud-Ouest; Institut National de Recherche en Informatique et en Automatique (Inria)
    • Publication Information:
      Preprint
    • Publication Information:
      Elsevier BV, 2024.
    • Publication Date:
      2024
    • Abstract:
      We present a nonlinear interpolation technique for parametric fields that exploits optimal transportation of coherent structures of the solution to achieve accurate performance. The approach generalizes the nonlinear interpolation procedure introduced in [Iollo, Taddei, J. Comput. Phys., 2022] to multi-dimensional parameter domains and to datasets of several snapshots. Given a library of high-fidelity simulations, we rely on a scalar testing function and on a point set registration method to identify coherent structures of the solution field in the form of sorted point clouds. Given a new parameter value, we exploit a regression method to predict the new point cloud; then, we resort to a boundary-aware registration technique to define bijective mappings that deform the new point cloud into the point clouds of the neighboring elements of the dataset, while preserving the boundary of the domain; finally, we define the estimate as a weighted combination of modes obtained by composing the neighboring snapshots with the previously-built mappings. We present several numerical examples for compressible and incompressible, viscous and inviscid flows to demonstrate the accuracy of the method. Furthermore, we employ the nonlinear interpolation procedure to augment the dataset of simulations for linear-subspace projection-based model reduction: our data augmentation procedure is designed to reduce offline costs -- which are dominated by snapshot generation -- of model reduction techniques for nonlinear advection-dominated problems.
    • ISSN:
      0021-9991
    • Accession Number:
      10.1016/j.jcp.2024.113230
    • Accession Number:
      10.48550/arxiv.2310.04290
    • Rights:
      CC BY
      CC BY NC SA
    • Accession Number:
      edsair.doi.dedup.....a79dc8a000a221d78ddc2ec65f7978b7