Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Generalized convergence of solutions for nonlinear Hamilton–Jacobi equations with state-constraint

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Preprint
    • Publication Information:
      Elsevier BV, 2024.
    • Publication Date:
      2024
    • Abstract:
      For a continuous Hamiltonian $H : (x, p, u) \in T^*\mathbb{R}^n \times \mathbb{R}\rightarrow \mathbb{R}$, we consider the asymptotic behavior of associated Hamilton--Jacobi equations with state-constraint $H(x, Du, λu) \leq C_λ$ in $Ω_λ\subset \mathbb{R}^n$ and $H(x, Du, λu) \geq C_λ$ on $\overlineΩ_λ\subset \mathbb{R}^n$ a $λ\rightarrow 0^+$. When $H$ satisfies certain convex, coercive, and monotone conditions, the domain $Ω_λ:=(1+r(λ))Ω$ keeps bounded, star-shaped for all $λ>0$ with $\lim_{λ\rightarrow 0^+}r(λ)=0$, and $\lim_{λ\rightarrow 0^+}C_λ=c(H)$ equals the ergodic constant of $H(\cdot,\cdot,0)$, we prove the convergence of solutions $u_λ$ to a specific solution of the critical equation $H(x, Du, 0)\leq c(H) $ in $Ω$ and $H(x, Du, 0)\geq c(H) $ on $\overlineΩ$. We also discuss the generalization of such a convergence for equations with more general $C_λ$ and $Ω_λ$.
      27 pages, some more typos corrected
    • ISSN:
      0022-0396
    • Accession Number:
      10.1016/j.jde.2024.06.010
    • Accession Number:
      10.48550/arxiv.2303.17058
    • Rights:
      Elsevier TDM
      arXiv Non-Exclusive Distribution
    • Accession Number:
      edsair.doi.dedup.....ae47f66c459aa5bf5480e9ac44e42535