Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Recursively Divided Pancake Graphs with a Small Network Cost

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      MDPI AG, 2021.
    • Publication Date:
      2021
    • Abstract:
      Graphs are often used as models to solve problems in computer science, mathematics, and biology. A pancake sorting problem is modeled using a pancake graph whose classes include burnt pancake graphs, signed permutation graphs, and restricted pancake graphs. The network cost is degree × diameter. Finding a graph with a small network cost is like finding a good sorting algorithm. We propose a novel recursively divided pancake (RDP) graph that has a smaller network cost than other pancake-like graphs. In the pancake graph Pn, the number of nodes is n!, the degree is n − 1, and the network cost is O(n2). In an RDPn, the number of nodes is n!, the degree is 2log2n − 1, and the network cost is O(n(log2n)3). Because O(n(log2n)3) <
      O(n2), the RDP is superior to other pancake-like graphs. In this paper, we propose an RDPn and analyze its basic topological properties. Second, we show that the RDPn is recursive and symmetric. Third, a sorting algorithm is proposed, and the degree and diameter are derived. Finally, the network cost is compared between the RDP graph and other classes of pancake graphs.
    • File Description:
      application/pdf
    • ISSN:
      2073-8994
    • Rights:
      OPEN
    • Accession Number:
      edsair.doi.dedup.....e29f89260a3d43e6ddcb0b1aca0594ac