Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Los Alamos National Laboratory (LANL); Observatoire Volcanologique du Piton de la Fournaise (OVPF); Institut de Physique du Globe de Paris (IPG Paris); Institut de Physique du Globe de Paris (IPGP (UMR_7154)); Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Institut des Sciences de la Terre (ISTerre); Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA); European Project: 817803,FaultScan; Institut de Physique du Globe de Paris; Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Grenoble Alpes (UGA)-Université Gustave Eiffel-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]); Brenguier, Florent; Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement IRD : UR219-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
    • Publication Information:
      Preprint
    • Publication Information:
      American Geophysical Union (AGU), 2019.
    • Publication Date:
      2019
    • Abstract:
      Volcanic tremor is key to our understanding of active magmatic systems, but due to its complexity, there is still a debate concerning its origins and how it can be used to characterize eruptive dynamics. In this study we leverage machine learning techniques using 6 years of continuous seismic data from the Piton de la Fournaise volcano (La Réunion island) to describe specific patterns of seismic signals recorded during eruptions. These results unveil what we interpret as signals associated with various eruptive dynamics of the volcano, including the effusion of a large volume of lava during the August–October 2015 eruption as well as the closing of the eruptive vent during the September–November 2018 eruption. The machine learning workflow we describe can easily be applied to other active volcanoes, potentially leading to an enhanced understanding of the temporal and spatial evolution of volcanic eruptions.
    • File Description:
      application/pdf
    • ISSN:
      1944-8007
      0094-8276
    • Accession Number:
      10.1029/2019gl085523
    • Accession Number:
      10.31223/osf.io/j6vqt
    • Accession Number:
      10.48550/arxiv.1909.12395
    • Rights:
      CC BY NC ND
      CC BY
      URL: http://www.gnu.org/licenses/lgpl-2.1.txt
    • Accession Number:
      edsair.doi.dedup.....e357cbb491f6d6750acf84905ed1ba23