Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A low complexity Hopfield neural network turbo equalizer

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Springer Nature
    • Abstract:
      In this article, it is proposed that a Hopfield neural network (HNN) can be used to jointly equalize and decode information transmitted over a highly dispersive Rayleigh fading multipath channel. It is shown that a HNN MLSE equalizer and a HNN MLSE decoder can be merged in order to realize a low complexity joint equalizer and decoder, or turbo equalizer, without additional computational complexity due to the decoder. The computational complexity of the Hopfield neural network turbo equalizer (HNN-TE) is almost quadratic in the coded data block length and approximately independent of the channel memory length, which makes it an attractive choice for systems with extremely long memory. Results show that the performance of the proposed HNN-TE closely matches that of a conventional turbo equalizer in systems with short channel memory, and achieves near-matched filter performance in systems with extremely large memory.
    • ISSN:
      1687-6180
    • Accession Number:
      10.1186/1687-6180-2013-15
    • Rights:
      OPEN
    • Accession Number:
      edsair.doi.dedup.....ff8a4e2bb957aa1b678f685a68c03ca9