Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Induction in myeloid leukemic cells of genes that are expressed in different normal tissues

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Date:
      2005
    • Collection:
      Quantitative Biology
    • Abstract:
      Using DNA microarray and cluster analysis of expressed genes in a cloned line (M1-t-p53) of myeloid leukemic cells, we have analyzed the expression of genes that are preferentially expressed in different normal tissues. Clustering of 547 highly expressed genes in these leukemic cells showed 38 genes preferentially expressed in normal hematopoietic tissues and 122 other genes preferentially expressed in different normal non-hematopoietic tissues including neuronal tissues, muscle, liver and testis. We have also analyzed the genes whose expression in the leukemic cells changed after activation of wild-type p53 and treatment with the cytokine interleukin 6 (IL-6) or the calcium mobilizer thapsigargin (TG). Out of 620 such genes in the leukemic cells that were differentially expressed in normal tissues, clustering showed 80 genes that were preferentially expressed in hematopoietic tissues and 132 genes in different normal non-hematopietic tissues that also included neuronal tissues, muscle, liver and testis. Activation of p53 and treatment with IL-6 or TG induced different changes in the genes preferentially expressed in these normal tissues. These myeloid leukemic cells thus express genes that are expressed in normal non-hematopoietic tissues, and various treatments can reprogram these cells to induce other such non-hematopoietic genes. The results indicate that these leukemic cells share with normal hematopoietic stem cells the plasticity of differentiation to different cell types. It is suggested that this reprogramming to induce in malignant cells genes that are expressed in different normal tissues may be of clinical value in therapy.
    • Accession Number:
      10.1073/pnas.0406966101
    • Accession Number:
      edsarx.q-bio/0511020