Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Biologie, Bioingénierie et Bioimagerie Ostéo-articulaires (B3OA (UMR 7052 / U1271)); École nationale vétérinaire d'Alfort (ENVA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
    • Publication Information:
      HAL CCSD
      Elsevier
    • Publication Date:
      2020
    • Collection:
      Mines de Saint-Etienne: Archives Ouvertes / Open Archive (HAL)
    • Abstract:
      International audience ; The architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triplyperiodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs. Sintered hydroxyapatite implants were produced using a dedicated additive manufacturing technology and their morphological, physico-chemical and mechanical features were characterized. The implants' integrity and ability to support bone ingrowth were assessed after 4, 6 and 8 weeks of implantation in a 3-mm-long, femoral defect in Lewis rats. GP and GPRC implants were manufactured with comparable macro-to nano-architectures. Cortical-like reinforcement significantly improved implant effective stiffness and resistance to fracture after implantation. This cortical-like reinforcement also concentrated new bone formation in the core of the GPRC implants, without affecting newly formed bone quantity or maturity. This study showed, for the first time, that custom-made TPMS-based bioceramic implants could be produced and successfully implanted in load-bearing sites. Adding a cortical-like reinforcement (GPRC implants) was a relevant solution to improve implant mechanical resistance, and changed osteogenic mechanism compared to the GP implants.
    • Relation:
      hal-03031166; https://hal.science/hal-03031166; https://hal.science/hal-03031166/document; https://hal.science/hal-03031166/file/Charbonnier20_TPMS.pdf
    • Accession Number:
      10.1016/j.actbio.2020.03.016
    • Online Access:
      https://hal.science/hal-03031166
      https://hal.science/hal-03031166/document
      https://hal.science/hal-03031166/file/Charbonnier20_TPMS.pdf
      https://doi.org/10.1016/j.actbio.2020.03.016
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.16974C11