Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Dynamic Fractional-Order Model of Proton Exchange Membrane Fuel Cell System for Sustainability Improvement

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Zhengzhou University; Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST); Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Systèmes et Applications des Technologies de l'Information et de l'Energie (SATIE); École normale supérieure - Rennes (ENS Rennes)-Conservatoire National des Arts et Métiers CNAM (CNAM)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-Université Gustave Eiffel-CY Cergy Paris Université (CY); The experimental work was carried out as part of the project Decentralized Energy Production led by ITE EFFICACITY, the French R&D Institute for urban energy transition.
    • Publication Information:
      HAL CCSD
      MDPI
    • Publication Date:
      2024
    • Collection:
      Université de Franche-Comté (UFC): HAL
    • Abstract:
      International audience ; The proton exchange membrane fuel cell (PEMFC) stands at the forefront of advancing energy sustainability. Effective monitoring, control, diagnosis, and prognosis are crucial for optimizing the PEMFC system’s sustainability, necessitating a dynamic model that can capture the transient response of the PEMFC. This paper uses a dynamic fractional-order model to describe the behaviors of a stationary micro combined heat and power (mCHP) PEMFC stack. Based on the fractional-order equivalent circuit model, the applied model accurately represents the electrochemical impedance spectroscopy (EIS) and the dynamic voltage response under transient conditions. The applied model is validated through experiments on an mCHP PEMFC stack under various fault conditions. The EIS data is analyzed under different current densities and various fault conditions, including the stoichiometry of the anode and cathode, the stack temperature, and the relative humidity. The dynamic voltage response of the applied model shows good correspondence with experimental results in both phase and amplitude, thereby affirming the method’s precision and solidifying its role as a reliable tool for enhancing the sustainability and operational efficiency of PEMFC systems.
    • Relation:
      hal-04562641; https://univ-eiffel.hal.science/hal-04562641; https://univ-eiffel.hal.science/hal-04562641/document; https://univ-eiffel.hal.science/hal-04562641/file/sustainability-16-02939.pdf
    • Accession Number:
      10.3390/su16072939
    • Online Access:
      https://univ-eiffel.hal.science/hal-04562641
      https://univ-eiffel.hal.science/hal-04562641/document
      https://univ-eiffel.hal.science/hal-04562641/file/sustainability-16-02939.pdf
      https://doi.org/10.3390/su16072939
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.17800486