Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Preferential adsorption to air-water interfaces: a novel cryoprotective mechanism for LEA proteins

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Portland Press, Ltd.
      //portlandpress.com/biochemj/article/476/7/1121/219556/Preferential-adsorption-to-air-water-interfaces-a
      Biochemical Journal
    • Publication Date:
      2019
    • Collection:
      Apollo - University of Cambridge Repository
    • Abstract:
      Late embryogenesis abundant (LEA) proteins comprise a diverse family whose members play a key role in abiotic stress tolerance. As intrinsically disordered proteins, LEA proteins are highly hydrophilic and inherently stress tolerant. They have been shown to stabilize multiple client proteins under a variety of stresses, but current hypotheses do not fully explain how such broad range stabilization is achieved. Here, using neutron reflection and surface tension experiments, we examine in detail the mechanism by which model LEA proteins, AavLEA1 and ERD10, protect the enzyme citrate synthase from aggregation during freeze-thaw. We find that a major contributing factor to citrate synthase aggregation is the formation of air bubbles during the freeze-thaw process. This greatly increases the air-water interfacial area, which is known to be detrimental to folded protein stability. Both model LEA proteins preferentially adsorb to this interface and compete with citrate synthase, thereby reducing surface induced aggregation. This novel surface activity provides a general mechanism by which diverse members of the LEA protein family might function to provide aggregation protection that is not specific to the client protein. ; Canadian Research Council for PhD studentship + ERC grant
    • File Description:
      application/pdf
    • Relation:
      https://www.repository.cam.ac.uk/handle/1810/290979
    • Accession Number:
      10.17863/CAM.38158
    • Online Access:
      https://www.repository.cam.ac.uk/handle/1810/290979
      https://doi.org/10.17863/CAM.38158
    • Rights:
      All rights reserved ; Attribution 4.0 International ; http://creativecommons.org/licenses/by/4.0/
    • Accession Number:
      edsbas.24391D51