Abstract: Nanocomposite Zr0.52Al0.48N1.11 thin films consisting of crystalline grains surrounded by an amorphous matrix were deposited using cathodic arc evaporation. The structure evolution after annealing of the films was studied using high-energy x-ray scattering and transmission electron microscopy. The mechanical properties were characterized by nanoindentation on as-deposited and annealed films. After annealing in temperatures of 1050-1400 ◦C nucleation and grain growth of cubic ZrN takes place in the film. This increases the hardness, which reaches a maximum while parts of the film remain amorphous. Grain growth of the hexagonal AlN phase occurs above 1400 ◦C. ; funding agencies|Swedish Research Council (VR)||VINNEX center of Excellence on Functional Nanoscale Materials (FunMat)||U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences|DE-AC02-06CH11357|Linnaeus Grants
No Comments.