Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Self-supervised learning to predict intrahepatic cholangiocarcinoma transcriptomic classes on routine histology

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Hôpital Beaujon AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP); Centre de recherche sur l'Inflammation (CRI (UMR_S_1149 / ERL_8252 / U1149)); Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Centre de Bioinformatique (CBIO); Mines Paris - PSL (École nationale supérieure des mines de Paris); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL); CHU Henri Mondor Créteil; Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut Curie Paris -Institut National de la Santé et de la Recherche Médicale (INSERM); Université Paris Sciences et Lettres (PSL); ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
    • Publication Information:
      CCSD
    • Publication Date:
      2025
    • Collection:
      MINES ParisTech: Archive ouverte / Open Archive (HAL)
    • Abstract:
      Objective The transcriptomic classification of intrahepatic cholangiocarcinomas (iCCA) has been recently refined from two to five classes, associated with pathological features, targetable genetic alterations and survival. Despite its prognostic and therapeutic value, the classification is not routinely used in the clinic because of technical limitations, including insufficient tissue material or the cost of molecular analyses. Here, we assessed a self-supervised learning (SSL) model for predicting iCCA transcriptomic classes on whole-slide digital histological images (WSIs) Design Transcriptomic classes defined from RNAseq data were available for all samples. The SSL method, called Giga-SSL, was used to train our model on a discovery set of 766 biopsy slides (n=137 cases) and surgical samples (n=109 cases) from 246 patients in a five-fold cross-validation scheme. The model was validated in The Cancer Genome Atlas (TCGA) (n= 29) and a French external validation set (n=32). Results Our model showed good to very good performance in predicting the four most frequent transcriptomic class in the discovery set (area under the curve [AUC]: 0.63-0.84), especially for the hepatic stem-like class (37% of cases, AUC 0.84). The model performed equally well in predicting these four transcriptomic classes in the two validation sets, with AUCs ranging from 0.76 to 0.80 in the TCGA set and 0.62 to 0.92 in the French external set. Conclusion We developed and validated an SSL-based model for predicting iCCA transcriptomic classes on routine histological slides of biopsy and surgical samples, which may impact iCCA management by predicting prognosis and guiding the treatment strategy.
    • Relation:
      BIORXIV: 2024.01.15.575652
    • Accession Number:
      10.1101/2024.01.15.575652
    • Online Access:
      https://minesparis-psl.hal.science/hal-04887163
      https://minesparis-psl.hal.science/hal-04887163v1/document
      https://minesparis-psl.hal.science/hal-04887163v1/file/2024.01.15.575652v1.full2.pdf
      https://doi.org/10.1101/2024.01.15.575652
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.2C23543B