Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Institut de Mathématiques et de Modélisation de Montpellier (I3M); Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS); Departamento de Matem ́ticas, Universidad Aut ́noma de Madrid; Departamento de Matemáticas Madrid; Universidad Autónoma de Madrid (UAM)-Universidad Autónoma de Madrid (UAM)
    • Publication Information:
      CCSD
      Springer Verlag
    • Publication Date:
      2009
    • Collection:
      Université de Montpellier: HAL
    • Abstract:
      International audience ; We study the existence and uniqueness of solutions of the convective-diffusive elliptic equation −div(D∇u) + div(V u) = f posed in a bounded domain Ω ⊂ RN , with pure Neumann boundary conditions D∇u * n = (V * n) u on ∂Ω. Under the assumption that V ∈ Lp (Ω)N with p = N if N ≥ 3 (resp. p > 2 if N = 2), we prove that the problem has a solution u ∈ H 1 (Ω) if Ω f dx = 0, and also that the kernel is generated by a function u ∈ H 1 (Ω), unique up to a multiplicative constant, which satisfies u > 0 a.e. on Ω. We also prove that the equation −div(D∇u) + div(V u) + ν u = f has a unique solution for all ν > 0 and the map f → u is an isomorphism of the respective spaces. The study is made in parallel with the dual problem, with equation −div(D T ∇v) − V * ∇v = g. The dependence on the data is also examined, and we give applications to solutions of nonlinear elliptic PDE with measure data and to parabolic problems.
    • Accession Number:
      10.1007/s00526-008-0189-y
    • Online Access:
      https://hal.science/hal-00808697
      https://hal.science/hal-00808697v1/document
      https://hal.science/hal-00808697v1/file/droniou-vazquez_cvpde.pdf
      https://doi.org/10.1007/s00526-008-0189-y
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.2D9B69C0