Item request has been placed!
×
Item request cannot be made.
×

Toward a unified theory of voice production and perception ; Hacia una teoría unificada de la producción y la percepción de la voz
Item request has been placed!
×
Item request cannot be made.
×

- Author(s): Kreiman, Jody; Gerratt, Bruce R.; Garellek, Marc; Samlan, Robin; Zhang, Zhaoyan
- Source:
Loquens; Vol. 1 No. 1 (2014); e009 ; Loquens; Vol. 1 Núm. 1 (2014); e009 ; 2386-2637 ; 10.3989/loquens.2014.v1.i1- Subject Terms:
- Document Type:
article in journal/newspaper- Language:
English - Source:
- Additional Information
- Publication Information: Consejo Superior de Investigaciones Científicas
- Publication Date: 2014
- Collection: Loquens (E-Journal)
- Abstract: At present, two important questions about voice remain unanswered: When voice quality changes, what physiological alteration caused this change, and if a change to the voice production system occurs, what change in perceived quality can be expected? We argue that these questions can only be answered by an integrated model of voice linking production and perception, and we describe steps towards the development of such a model. Preliminary evidence in support of this approach is also presented. We conclude that development of such a model should be a priority for scientists interested in voice, to explain what physical condition(s) might underlie a given voice quality, or what voice quality might result from a specific physical configuration. ; En la actualidad quedan por contestar dos cuestiones importantes relacionadas con la voz, a saber: (1) cuando la cualidad de la voz cambia, ¿qué alteración en el mecanismo vocal es la responsable?; y (2) si se produce un cambio en el sistema de producción de la voz, ¿qué cambio puede esperarse en la cualidad de voz percibida auditivamente? Sostenemos que la única respuesta posible a estas preguntas reside en un modelo de voz integrado que una producción y percepción, y describimos pasos hacia el desarrollo de tal modelo. Presentamos evidencias preliminares para respaldar esta propuesta. Concluimos que el desarrollo de semejante modelo debería ser una prioridad para los científicos interesados en la voz con el fin de explicar qué condición o condiciones físicas podrían subyacer a una cualidad de voz determinada, o qué cualidad de voz podría derivar de una configuración física específica.
- File Description: text/html; application/pdf; text/xml
- Relation: https://loquens.revistas.csic.es/index.php/loquens/article/view/8/18; https://loquens.revistas.csic.es/index.php/loquens/article/view/8/24; https://loquens.revistas.csic.es/index.php/loquens/article/view/8/19; Andics, A., McQueen, J. M., Petersson, K. M., Gál, V., Rudas, G., & Vidnyánszky, Z. (2010). Neural mechanisms for voice recognition. NeuroImage, 52, 1528–1540. http://dx.doi.org/10.1016/j.neuroimage.2010.05.048 PMid:20553895; Andruski, J., & Ratliff, M. (2000). Phonation types in production of phonological tone: The case of Green Mong. Journal of the International Phonetic Association, 30, 37–61. http://dx.doi.org/10.1017/S0025100300006654; Berke, G., Mendelsohn, A. H., Howard, N. S., & Zhang, Z. (2013). Neuromuscular induced phonation in a human ex vivo perfused larynx preparation. Journal of the Acoustical Society of America, 133, EL114–EL117. http://dx.doi.org/10.1121/1.4776776 PMid:23363190 PMCid:PMC3562273; Berry, D. A., Herzel, H., Titze, I. R., & Krischer, K. (1994). Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. Journal of the Acoustical Society of America, 95, 3595–3604. http://dx.doi.org/10.1121/1.409875; Blankenship, B. (2002). The timing of nonmodal phonation in vowels. Journal of Phonetics, 30, 163–191. http://dx.doi.org/10.1006/jpho.2001.0155; Buder, E.H. (2000). Acoustic analysis of voice quality: A tabulation of algorithms 1902-1990. In R.D. Kent & M.J. Ball (Eds.), Voice quality measurement (pp. 119–244). San Diego, CA: Singular.; de Krom, G. (1993). A cepstrum-based technique for determining a harmonics-to-noise ratio in speech signals. Journal of Speech and Hearing Research, 36, 254–266. PMid:8487518; Denes, P. B., and Pinson, E. N. (1993). The speech chain (2nd ed.). New York, NY: WH Freeman.; DiCanio, C. T. (2009). The phonetics of register in Takhian Thong Chong. Journal of the International Phonetic Association, 39, 162–188. http://dx.doi.org/10.1017/S0025100309003879; Esposito, C. M. (2012). An acoustic and electroglottographic study of White Hmong phonation. Journal of Phonetics, 40, 466–476. http://dx.doi.org/10.1016/j.wocn.2012.02.007; Fant, G. (1995). The LF model revisited. Transformations and frequency domain analysis. STL-QPSR, 36(2–3), 119–156.; Fant, G., Liljencrants, J., & Lin, Q. (1985). A four-parameter model of glottal flow. STL-QPSR, 26(4), 1–13.; Fischer-Jørgensen, E. (1967). Phonetic analysis of breathy (murmured) vowels in Gujarati. Indian Linguistics, 28, 71–139.; Fujisaki, H., & Ljungqvist, M. (1986). Proposal and evaluation of models for the glottal source waveform. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. 11), 1605–1608.; Garellek, M., & Keating, P. (2011). The acoustic consequences of phonation and tone interactions in Jalapa Mazatec. Journal of the International Phonetic Association, 41, 185–205. http://dx.doi.org/10.1017/S0025100311000193; Garellek, M., Keating, P., Esposito, C., & Kreiman, J. (2013). Voice quality and tone identification in White Hmong. Journal of the Acoustical Society of America, 133, 1087–1089. http://dx.doi.org/10.1121/1.4773259 PMid:23363123 PMCid:PMC3574099; Granqvist, S. (2003). The visual sort and rate method for perceptual evaluation in listening tests. Logopedics Phoniatrics Vocology, 28, 109–116. http://dx.doi.org/10.1080/14015430310015255; Guenther, F. H. (1994). A neural network model of speech acquisition and motor equivalent speech production. Biological Cybernetics, 72, 43–53. http://dx.doi.org/10.1007/BF00206237 PMid:7880914; Hanson, H. M. (1997). Glottal characteristics of female speakers: Acoustic correlates. Journal of the Acoustical Society of America, 101, 466–481. http://dx.doi.org/10.1121/1.417991; Hanson, H. M., & Chuang, E. S. (1999). Glottal characteristics of male speakers: Acoustic correlates and comparison with female data. Journal of the Acoustical Society of America, 106, 1064–1077. http://dx.doi.org/10.1121/1.427116; Hillenbrand, J., & Houde, R. A. (1996). Acoustic correlates of breathy vocal quality: Dysphonic voices and continuous speech. Journal of Speech and Hearing Research, 39, 311–321. PMid:8729919; Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell System Technical Journal, 51, 1233–1268. http://dx.doi.org/10.1002/j.1538-7305.1972.tb02651.x; Kreiman, J., Antoñanzas-Barroso, N., & Gerratt, B. R. (2010). Integrated software for analysis and synthesis of voice quality. Behavior Research Methods, 42, 1030–1041. http://dx.doi.org/10.3758/BRM.42.4.1030 PMid:21139170 PMCid:PMC3719850; Kreiman, J., Gabelman, B., & Gerratt, B. R. (2003). Perception of vocal tremor. Journal of Speech, Language, & Hearing Research, 46, 203–214. http://dx.doi.org/10.1044/1092-4388(2003/016); Kreiman, J., Garellek, M., & Esposito, C. (2011). Perceptual importance of the voice source spectrum from H2 to 2 kHz. Journal of the Acoustical Society of America, 130, 2570. http://dx.doi.org/10.1121/1.3655295; Kreiman, J., Garellek, M., Samlan, R. A., and Gerratt, B. R. (2014). Perceptual sensitivity to a model of the voice source spectrum. Manuscript in preparation.; Kreiman, J., & Gerratt, B. R. (2005). Perception of aperiodicity in pathological voice. Journal of the Acoustical Society of America, 117, 2201–2211. http://dx.doi.org/10.1121/1.1858351; Kreiman, J., & Gerratt, B. R. (2010). Perceptual sensitivity to first harmonic amplitude in the voice source. Journal of the Acoustical Society of America, 128, 2085–2089. http://dx.doi.org/10.1121/1.3478784 PMid:20968379 PMCid:PMC2981120; Kreiman, J., & Gerratt, B. R. (2011). Modeling overall voice quality with a small set of acoustic parameters. Journal of the Acoustical Society of America, 129, 2529. http://dx.doi.org/10.1121/1.3588381; Kreiman, J., & Gerratt, B. R. (2012). Perceptual interaction of the harmonic source and noise in voice. Journal of the Acoustical Society of America, 131, 492–500. http://dx.doi.org/10.1121/1.3665997 PMid:22280610 PMCid:PMC3283904; Kreiman, J., Gerratt, B. R., & Antoñanzas-Barroso, N. (2007a). Measures of glottal source spectrum. Journal of Speech and Hearing Research, 50, 595–610. http://dx.doi.org/10.1044/1092-4388(2007/042); Kreiman, J., Gerratt, B. R., & Berke, G. S. (1994). The multidimensional nature of pathologic vocal quality. Journal of the Acoustical Society of America, 96, 1291–1302. http://dx.doi.org/10.1121/1.410277; Kreiman, J., Gerratt, B. R., & Ito, M. (2007b). When and why listeners disagree in voice quality assessment tasks. Journal of the Acoustic Society of America, 122, 2354–2364. http://dx.doi.org/10.1121/1.2770547 PMid:17902870; Kreiman, J., Shue, Y.-L., Chen, G., Iseli, M., Gerratt, B. R., Neubauer, J., & Alwan, A. (2012). Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation. Journal of the Acoustical Society of America, 132, 2625–2632. http://dx.doi.org/10.1121/1.4747007 PMid:23039455 PMCid:PMC3477193; Kreiman, J., & Sidtis, D. (2011). Foundations of voice studies. An interdisciplinary approach to voice production and perception. Malden, MA: Wiley-Blackwell. http://dx.doi.org/10.1002/9781444395068; Latinus, M., McAleer, P., Bestelmeyer, P. E. G., & Belin, P. (2013). Norm-based coding of voice identity in human auditory cortex. Current Biology, 23, 1075–1080. http://dx.doi.org/10.1016/j.cub.2013.04.055 PMid:23707425 PMCid:PMC3690478; Lavner, Y., Rosenhouse, J., & Gath, I. (2001). The prototype model in speaker identification by human listeners. International Journal of Speech Technology, 4, 63–74. http://dx.doi.org/10.1023/A:1009656816383; Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America, 49, 467–478. http://dx.doi.org/10.1121/1.1912375; Li, X., & Pastore, R. E. (1995). Perceptual constancy of a global spectral property: Spectral slope discrimination. Journal of the Acoustical Society of America, 98, 1956–68. http://dx.doi.org/10.1121/1.413315; Maryn, Y., Roy, N., De Bodt, M., Van Cauwenberge, P., & Corthals, P. (2009). Acoustic measurement of overall voice quality: A meta-analysis. Journal of the Acoustical Society of America, 126, 2619–2634. http://dx.doi.org/10.1121/1.3224706 PMid:19894840; Melara, R. D., & Marks, L. E. (1990). Interaction among auditory dimensions: Timbre, pitch, and loudness. Perception and Psychophysics, 48, 169–178. http://dx.doi.org/10.3758/BF03207084 PMid:2385491; Mendelsohn, A. H., & Zhang, Z. (2011). Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds. Journal of the Acoustical Society of America, 130, 2961–2968. http://dx.doi.org/10.1121/1.3644913 PMid:22087924 PMCid:PMC3259665; Ni Chasaide, A., & Gobl, C. (1997). Voice source variation. In W. J. Hardcastle & J. Laver (Eds.), The handbook of phonetic sciences (pp. 427–461). Oxford, UK: Blackwell.; Roy, N., Barkmeier-Kraemer, J., Eadie, T., Sivasankar, M. P., Mehta, D., Paul, D., and Hillman, R. (2013). Evidence based clinical voice assessment: A systematic review. American Journal of Speech-Language Pathology, 22, 212–226. http://dx.doi.org/10.1044/1058-0360(2012/12-0014); Samlan, R. A., & Story, B. H. (2011). Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling. Journal of Speech, Language, & Hearing Research, 54, 1267–1283. http://dx.doi.org/10.1044/1092-4388(2011/10-0195); Samlan, R. A., Story, B. H., & Bunton, K. (2013). Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling. Journal of Speech, Language, & Hearing Research, 56, 1209–1223. http://dx.doi.org/10.1044/1092-4388(2012/12-0194); Schweinberger, S. R., Herholz, A., & Stief, V. (1997). Auditory long-term memory: Repetition priming of voice recognition. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 50, 498–517. http://dx.doi.org/10.1080/713755724; Steinecke, I., & Herzel, H. (1995). Bifurcations in an asymmetric vocal fold model. Journal of the Acoustical Society of America, 97, 1874–1884. http://dx.doi.org/10.1121/1.412061; Story, B. H., & Titze, I. R. (1995). Voice simulation with a body-cover model of the vocal folds. Journal of the Acoustical Society of America, 97, 1249–1260. http://dx.doi.org/10.1121/1.412234; Titze, I. R. (1994). Principles of voice production. Englewood Cliffs, NJ: Prentice Hall.; Titze, I. R., & Talkin, D. T. (1979). A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation. Journal of the Acoustical Society of America, 66, 60–74. http://dx.doi.org/10.1121/1.382973; Van Lancker, D., Kreiman, J., & Emmorey, K. (1985). Familiar voice recognition: Patterns and parameters. Part I: Recognition of backward voices. Journal of Phonetics, 13, 19–38.; Van Lancker, D., Kreiman, J., & Wickens, T. D. (1985). Familiar voice recognition: Patterns and parameters. Part II: Recognition of rate-altered voices. Journal of Phonetics, 13, 39–52.; Xue, Q., Mittal, R., Zheng, X., & Bielamowicz, S. (2012). Computational modeling of phonatory dynamics in a tubular three dimensional model of the human larynx. Journal of the Acoustical Society of America, 132, 1602–1613. http://dx.doi.org/10.1121/1.4740485 PMid:22978889 PMCid:PMC3460983; Zhang, Z., Kreiman, J., Gerratt, B. R., & Garellek, M. (2013). Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models. Journal of the Acoustical Society of America, 133, 453–462. http://dx.doi.org/10.1121/1.4770235 PMid:23297917 PMCid:PMC3548838; Zhang, Z., Neubauer, J., & Berry, D. A. (2006). The influence of subglottal acoustics in laboratory models of phonation. Journal of the Acoustical Society of America, 120, 1558–1569. http://dx.doi.org/10.1121/1.2225682; Zhang, Z., Neubauer, J., & Berry, D. A. (2007). Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation. Journal of the Acoustical Society of America, 122, 2279–2295. http://dx.doi.org/10.1121/1.2773949 PMid:17902864; https://loquens.revistas.csic.es/index.php/loquens/article/view/8
- Accession Number: 10.3989/loquens.2014.009
- Online Access: https://loquens.revistas.csic.es/index.php/loquens/article/view/8
https://doi.org/10.3989/loquens.2014.009 - Rights: Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0
- Accession Number: edsbas.35D4731B
- Publication Information:

Copyright © Department of Culture and Tourism, all rights reserved.
Copyright © 2024 Department of Culture and Tourism, all rights reserved. Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
No Comments.