Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Indirect controllability of some linear parabolic systems of m equations with m − 1 controls involving coupling terms of zero or first order

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB); Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); CEntre de REcherches en MAthématiques de la DEcision (CEREMADE); Université Paris Dauphine-PSL; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
    • Publication Information:
      HAL CCSD
      Elsevier
    • Publication Date:
      2016
    • Collection:
      Université Paris-Dauphine: HAL
    • Abstract:
      International audience ; This paper is devoted to the study of the null and approximate controllability for some classes of linear coupled parabolic systems with less controls than equations. More precisely, for a given bounded domain Ω in R N (N ∈ N *), we consider a system of m linear parabolic equations (m 2) with coupling terms of first and zero order, and m − 1 controls localized in some arbitrary nonempty open subset ω of Ω. In the case of constant coupling coefficients, we provide a necessary and sufficient condition to obtain the null or approximate controllability in arbitrary small time. In the case m = 2 and N = 1, we also give a generic sufficient condition to obtain the null or approximate controllability in arbitrary small time for general coefficients depending on the space and times variables, provided that the supports of the coupling terms intersect the control domain ω. The results are obtained thanks to the fictitious control method together with an algebraic method and some appropriate Carleman estimates.
    • Relation:
      hal-01162105; https://hal.science/hal-01162105; https://hal.science/hal-01162105/document; https://hal.science/hal-01162105/file/gromov.pdf
    • Accession Number:
      10.1016/j.matpur.2016.03.016
    • Online Access:
      https://doi.org/10.1016/j.matpur.2016.03.016
      https://hal.science/hal-01162105
      https://hal.science/hal-01162105/document
      https://hal.science/hal-01162105/file/gromov.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.3918B44C