Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

3D printing of cubic zirconia lattice supports for hydrogen production

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      UAM. Departamento de Ingeniería Química
    • Publication Information:
      Elsevier Ltd.
    • Publication Date:
      2023
    • Collection:
      Universidad Autónoma de Madrid (UAM): Biblos-e Archivo
    • Abstract:
      The demand for hydrogen has extraordinarily grown during the last years, being one of the most attractive forms of fuels to produce green energy. Cubic zirconia ceramics are considered promising catalytic supports, and the additive manufacturing of porous 3D structures based on these ceramics could enhance their catalytic performance. Herein, lightweight highly porous (up to 88%) 3D patterned 8 mol% yttria-stabilized cubic zirconia (8YSZ) scaffolds are manufactured by robocasting from pseudoplastic aqueous-based inks to produce catalytic supports for the hydrogen (H2) production. These scaffolds are thermally treated at temperatures ranging between 1000 and 1400 ◦C and, hence, mechanically and electrically characterized. 3D 8YSZ structures sintered at 1200 ◦C, with an appropriate balance between high porosity (86%) and compressive strength (3.7 MPa), are impregnated with palladium (Pd) catalytic nanoparticles and employed in the catalytic dehydrogenation of renewable formic acid (FA) using a fixed-bed reactor. 3D Pd/8YSZ catalyst leads to the continuous production of CO-free H2 with a FA conversion of 32% at T =55 ◦C ; This work was supported by the Spanish Government through RTI2018-095052-B-I00, PID2019-105079RB-I00 (MICINN/AEI/FEDER, UE), PID2021-125427OB-I00 (MICINN/AEI/FEDER, UE) and EIN2020- 112153 (MCINN/AEI/10.13039/501100011033) projects, the latter also supported by the European Union through “NextGenerationEU/ PRTR”. M. Koller gratefully acknowledges funding within “Support for International Mobility of Researchers of the Institute of Thermomechanics, Czech Academy of Sciences, part II”, no. CZ.02.2.69/0.0/ 0.0/18_053/0017555 of the Ministry of Education, Youth and Sports of the Czech Republic funded from the European Structure and Investment Funds (ESIF). G. Vega acknowledges the Universidad Aut´onoma de Madrid for the Predoctoral contract. The authors thank J. Mejía for her permanent technical assistance in the catalytic experiments
    • File Description:
      application/pdf
    • ISSN:
      0272-8842
    • Relation:
      Ceramics International; Gobierno de España. PID2019-105079RB-I00; Gobierno de España. PID2021-125427OB-I00; Gobierno de España. RTI2018-095052-B-I00; Ceramics International 49.13 (2023): 22529-225361; http://hdl.handle.net/10486/708253; 22529; 13; 225361; 49
    • Accession Number:
      10.1016/j.ceramint.2023.04.087
    • Online Access:
      http://hdl.handle.net/10486/708253
      https://doi.org/10.1016/j.ceramint.2023.04.087
    • Rights:
      © 2023 The Authors ; Reconocimiento – NoComercial – SinObraDerivada ; openAccess
    • Accession Number:
      edsbas.3E32B637