Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Progressive failure of ductile metals: Description via a three-dimensional coupled CZM-XFEM based approach

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Laboratoire QUARTZ (QUARTZ); Université Paris 8 Vincennes-Saint-Denis (UP8)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-SUPMECA - Institut supérieur de mécanique de Paris (SUPMECA)-Ecole Internationale des Sciences du Traitement de l'Information (EISTI); SUPMECA - Institut supérieur de mécanique de Paris (SUPMECA); Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO); Institut Clément Ader (ICA); Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)
    • Publication Information:
      CCSD
      Elsevier
    • Publication Date:
      2021
    • Collection:
      Université Paris Lumières: HAL
    • Abstract:
      International audience ; The present work pertains to the numerical prediction of the current residual strength of large metallic engineering structures when submitted to accidental overloads. In this context, is developed a unified 3D numerical methodology reproducing the successive stages of the progressive failure of structures made of ductile metals, viz. (i) more or less diffuse micro-voiding induced damage, (ii) strain/damage localization in a narrow band, and (iii) macro-crack formation and propagation. This is notably realized via a combination of the GTN model and an XFEM/CZM coupling. Localization is addressed here as a phenomenon driven either by plastic instability or void coalescence. In the latter case an original transition criterion is proposed, accounting for the competition between Mode I/II type localization, utilizing the local triaxiality as a mode indicator. The methodology is implemented as a user element subroutine (UEL) within the commercial finite element computation code ABAQUS and its performance is assessed considering 3D numerical simulations of various loading cases. The proposed methodology is shown to be mesh objective and able to fairly reproduce ductile crack patterns, while it gives promising results regarding global specimen responses.
    • Accession Number:
      10.1016/j.engfracmech.2020.107498
    • Online Access:
      https://hal.science/hal-03110423
      https://hal.science/hal-03110423v1/document
      https://hal.science/hal-03110423v1/file/S0013794420310584.pdf
      https://doi.org/10.1016/j.engfracmech.2020.107498
    • Rights:
      http://creativecommons.org/licenses/by-nc/ ; info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.49A263AD