Abstract: In this work, we obtain the spectral decomposition of the solution of the Lindley integral equation for a queuing system with a Poisson input flow of requirements and a hyper-Erlang distribution of the service time. Based on it, a calculation formula is derived for the average queue waiting time for this system in a closed form. As you know, all other characteristics of the queuing systems are derived from the average waiting time. The resulting calculation formula complements and extends the well-known Polyachek-Khinchin formula in queuing theory for M/G/1 systems. In the queueing theory, studies of private systems of the M/G/1 type are relevant due to the fact that they are still actively used in the modern theory of teletraffic.
No Comments.