Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Characterizing the maximum parameter of the total-variation denoising through the pseudo-inverse of the divergence

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Institut de Mathématiques de Bordeaux (IMB); Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS); Laboratoire Traitement et Communication de l'Information (LTCI); Télécom ParisTech-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS); Institut de Mathématiques de Bourgogne Dijon (IMB); Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
    • Publication Information:
      CCSD
    • Publication Date:
      2017
    • Collection:
      Université de Bourgogne (UB): HAL
    • Subject Terms:
    • Abstract:
      International audience ; We focus on the maximum regularization parameter for anisotropic total-variation denoising. It corresponds to the minimum value of the regularization parameter above which the solution remains constant. While this value is well know for the Lasso, such a critical value has not been investigated in details for the total-variation. Though, it is of importance when tuning the regularization parameter as it allows fixing an upper-bound on the grid for which the optimal parameter is sought. We establish a closed form expression for the one-dimensional case, as well as an upper-bound for the two-dimensional case, that appears reasonably tight in practice. This problem is directly linked to the computation of the pseudo-inverse of the divergence, which can be quickly obtained by performing convolutions in the Fourier domain.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1612.03080; ARXIV: 1612.03080
    • Online Access:
      https://hal.science/hal-01412059
      https://hal.science/hal-01412059v1/document
      https://hal.science/hal-01412059v1/file/lambdamax.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.5AD27776