Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Probable Mechanisms of COVID-19 Pathogenesis ; Вероятные механизмы патогенеза COVID-19

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Bashkir State Medical University
    • Publication Date:
      2020
    • Collection:
      Creative surgery and oncology (E-Journal) / Креативная хирургия и онкология
    • Abstract:
      This review paper focuses on the search for innovative directions in the study of COVID­19 viral infection with the purpose of improving the methods of its treatment and vaccination. Thus far, comprehensive data have been obtained on the ability of nonretroviral RNA viruses, including those replicated in the cytoplasm, to integrate fragments of their genomes into the host DNA. This mechanism provided by the reverse transcriptase and integrase of endogenous retroelements leads to the persistence of nonretroviral RNA viruses through the expression of viral proteins by the host genome, which may serve as a prerequisite for the survival of such viruses. DNA integration events play a role in the development of both the immunological response and protective antiviral responses through the RNA interference system. These mechanisms may depend on the phylogenetically ancient fossils of nonretroviral RNA sequences in animal genomes. The discovery of SARS-CoV-2 fragments in COVID­19 recovered patients suggests that the pathogenesis of this disease may be associated with the integration of SARS-CoV-2 genome fragments in the human genome by means of proteins of endogenous retroviral elements. This assumption can be confirmed by the data about the development in older patients of predominantly severe forms of COVID­19 with “hyperactive” immune reactions, which normally weaken with ageing. This may be attributed to age­related abnormal activation of retrocells, which contribute to reverse transcription and integration of exogenous viruses. This assumption is supported by the presence of coronavirus components in the nuclei of infected cells and the change in the expression of LINE­1 in the lung tissue cells of SARS patients. Due to the probable role of retrocells in the COVID­19 pathogenesis, LINE­1 reverse transcriptase inhibitors and targeted therapy using microRNAs may be offered as promising treatments for COVID­19. ; Обзорная статья посвящена поиску инновационных направлений в исследовании вирусной инфекции COVID­19 для улучшения методов вакцинопрофилактики и лечения болезни. В настоящее время получены убедительные данные о способности неретровирусных РНК­вирусов, в том числе реплицирующихся в цитоплазме, интегрировать фрагменты своих геномов в ДНК хозяев. Это обеспечивается благодаря обратной транскриптазе и интегразе эндогенных ретроэлементов и приводит к персистенции неретровирусных РНК­вирусов за счет экспрессии вирусных белков геномом хозяина, что может служить необходимым условием для поддержания жизнедеятельности вирусов. Интеграционные события играют роль в развитии иммунологического ответа организма и в защитных противовирусных реакциях с помощью системы РНК­интерференции. Данные механизмы могут зависеть от филогенетически древних остатков последовательностей неретровирусных РНК­вирусов в геномах животных. Обнаружение фрагментов SARS-CoV-2 у выздоровевших от COVID­ 19 позволяет сделать предположение о том, что в патогенезе болезни могли бы играть роль события встройки кДНК фрагментов генома вируса SARS-CoV-2 в геном человека с использованием белков эндогенных ретроэлементов. Подтверждением могут служить данные о развитии у пожилых пациентов преимущественно тяжелых форм COVID­19 с гиперактивностью иммунных реакций, несмотря на их снижение при старении, что может быть обусловлено возрастной аномальной активацией ретроэлементов, которые способствуют обратной транскрипции и встройке экзогенных вирусов. В пользу данного предположения говорят данные о наличии компонентов коронавирусов в ядрах инфицированных клеток и об изменении экспрессии LINE­1 в клетках легочной ткани больных SARS. В связи с вероятной ролью ретроэлементов в патогенезе COVID­19 в качестве перспективных направлений лечения COVID­19 могут быть предложены ингибиторы обратной транскриптазы LINE­1 и таргетная терапия с использованием микро­РНК.
    • File Description:
      application/pdf
    • Relation:
      https://www.surgonco.ru/jour/article/view/534/425; Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966;1:76–7. DOI:10.1016/s0140-6736(66)92364-6; Tyrrell D.A., Almeida J.D., Cunningham C.H., Dowdle W.R., Hofstad M.S., McIntosh K., et al. Coronaviridae. Intervirology. 1975;5(1–2):76–82. DOI:10.1159/000149883; McIntosh K., Kapikian A.Z., Turner H.C., Hartley J.W., Parrott R.H., Chanock R.M. Seroepidemiologic studies of coronavirus infection in adults and children. Am J Epidemiol. 1970;91(6):585–92. DOI:10.1093/oxfordjournals.aje.a121171; Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–25. DOI:10.1016/s0140-6736(03)13077-2; Azhar E.I., Hui D.S.C., Memish Z.A., Drosten C., Zumla A. The Middle East Respiratory Syndome (MERS). Infect Dis Clin North Am. 2019;33(4):891–905. DOI:10.1016/j.idc.2019.08.001; Hui D.S., Azhar E., Madani T.A., Ntoumi F., Kock R., Dar O., et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6. DOI:10.1016/j.ijid.2020.01.009; Zhang C., Zheng W., Huang X., Bell E.W., Zhou X., Zhang Y. Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes Snakes as Its Intermediate Host and the Unique Similarity between Its Spike Protein Insertions and HIV-1. J Proteome Res. 2020;19(4):1351–60. DOI:10.1021/acs.jproteome.0c00129; Yi Y., Lagniton P.N.P., Ye S., Li E., Xu R.H. COVID-19: what has been learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753–66. DOI:10.7150/ijbs.45134; Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92. DOI:10.1038/s41579-018-0118-9; Ceraolo C., Giorgi F.M. Genomic variance of the 2019- nCoV coronavirus. J Med Virol. 2020;92(5):522–8. DOI:10.1002/jmv.25700; Khailany R.A., Safdar M., Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020;19:100682. DOI:10.1016/j.genrep.2020.100682; de Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018;419:1–42. DOI:10.1007/82_2017_25; Tan Y.W., Hong W., Liu D.X. Binding of the 5’-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription. Nucleic Acids Res. 2012;40(11):5065–77. DOI:10.1093/nar/gks165; Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727–32. DOI:10.1080/22221751.2020.1746199; Giwa AL, Desai A, Duca A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): an overview for emergency clinicians. Pediatr Emerg Med Pract. 2020;17(5):1–24. PMID: 32286766; Lai C.C., Liu Y.H., Wang C.Y., Wang Y.H., Hsueh S.C., Yen M.Y., et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): Facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–12. DOI:10.1016/j.jmii.2020.02.012; Li Y., Hu Y., Zhang X., Yu Y., Li B., Wu J., et al. Follow-up testing of viral nucleic acid in discharged patients with moderate type of 2019 coronavirus disease (COVID-19). Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49(1):270–4. DOI:10.3785/j.issn.1008-9292.2020.03.11; Li Y., Hu Y., Yu Y., Zhang X., Li B., Wu J., et al. Positive result of SarsCov-2 in faeces and sputum from discharged patient with COVID-19 in Yiwu, China. J Med Virol. 2020;92(10):1938–47. DOI:10.1002/jmv.25905; Hurwitz J.L., Jones B.G., Charpentier E., Woodland D.L. Hypothesis: RNA and DNA viral sequence integration into the mammalian host genome supports long-term B cell and T cell adaptive immunity. Viral Immunol. 2017;30(9):628–32. DOI:10.1089/vim.2017.0099; Olson K.E., Bonizzoni M. Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? Curr. Opin. Insect. Sci. 2017;22:45–53. DOI:10.1016/j.cois.2017.05.010; Ter Horst A.M., Nigg J.C., Dekker F.M., Falk B.W. Endogenous viral elements are widespread in arthropod genomes and commonly give rise to PIWI-interacting RNAs. J Virol. 2019;93(6):e02124–18. DOI:10.1128/JVI.02124-18; Gallei A., Pankraz A., Thiel H.J., Becher P. RNA recombination in vivo in the absence of viral replication. J Virol. 2004;78(12):6271–81. DOI:10.1128/JVI.78.12.6271-6281.2004; Austermann-Busch S., Becher P. RNA structural elements determine frequency and sites of nonhomologous recombination in an animal plus-strand RNA virus. J Virol. 2012;86(13):7393–402. DOI:10.1128/JVI.00864-12; Zhdanov V.M. Integration of viral genomes. Nature. 1975;256(5517):471–3. DOI:10.1038/256471a0; Klenerman P., Hengartner H., Zinkernagel R.M. A non-retroviral RNA virus persists in DNA form. Nature. 1997;390:298–301. DOI:10.1038/36876; Geuking M.B., Weber J., Dewannieux M., Gorelik E., Heidmann T., Hengartner H., et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science. 2009;323(5912):393–6. DOI:10.1126/science.1167375; Shimizu A., Nakatani Y., Nakamura T., Jinno-Oue A., Ishikawa O., Boeke J.D., et al. Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells. Sci Rep. 2014;4:5074. DOI:10.1038/srep05074; Crochu S., Cook S., Attoui H., Charrel R.N., De Chesse R., Belhouchet M., et al. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol. 2004;85(Pt 7):1971–80. DOI:10.1099/vir.0.79850-0; Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6(11):e1001191. DOI:10.1371/journal.pgen.1001191; Horie M., Honda T., Suzuki Y., Kobayashi Y., Daito T., Oshida T., et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 2010;463(7277):84–7. DOI:10.1038/nature08695; Taylor D.J., Leach R.W., Bruenn J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol Biol. 2010;10:193. DOI:10.1186/1471-2148-10-193; Belyi V.A., Levine A.J., Skalka A.M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate. PLoS Pathog. 2010;6(7):e1001030. DOI:10.1371/journal.ppat.1001030; Bergmann C.C., Lane T.E., Stohlman S.A. Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol. 2006;4(2):121–32. DOI:10.1038/nrmicro1343; Xiao C., Li X., Liu S., Sang Y., Gao S.J., Gao F. HIV-1 did not contribute to the 2019-nCoV genome. Emerg Microbes Infect. 2020;9(1):378–81. DOI:10.1080/22221751.2020.1727299; Qinfen Z., Jinming C., Xiaojun H., Huanying Z., Jicheng H., Ling F., et al. The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol. 2004;73(3):332–7. DOI:10.1002/jmv.20095; Timani K.A., Liao Q., Ye L., Zeng Y., Liu J., Zheng Y., et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 2005;114(1–2):23–34. DOI:10.1016/j.virusres.2005.05.007; Yuan X., Yao Z., Shan Y., Chen B., Yang Z., Wu J., et al. Nucleolar localization of non-structural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus. Virus Res. 2005;114(1–2):70–9. DOI:10.1016/j.virusres.2005.06.001; Matthews K.L., Coleman C.M., van der Meer Y., Snijder E.J., Frieman M.B. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signaling. J Gen Virol. 2014;95(Pt 4):874–82. DOI:10.1099/vir.0.062059-0; Sharma K., Åkerström S., Sharma A.K., Chow V.T., Teow S., Abrenica B., et al. SARS-CoV 9b protein diffuses into nucleus, undergoes active Crm1 mediated nucleocytoplasmic export and triggers apoptosis when retained in the nucleus. PLoS One. 2011;6(5):e19436. DOI:10.1371/journal.pone.0019436; Luo H., Chen Q., Chen J., Chen K., Shen X., Jiang H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoproteins A1. FEBS Lett. 2005;579:2623–8. DOI:10.1016/j.febslet.2005.03.080; Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev. 2018;174:30–46. DOI:10.1016/j.mad.2018.02.002; He W.P., Shu C.L., Li B.A., Zhao J., Cheng Y. Human LINE1 endonuclease domain as a putative target of SARS- associated autoantibodies involved in the pathogenesis of severe acute respiratory syndrome. Chin Med J (Engl). 2008;121(7):608–14. PMID: 18466680; Richardson P., Griffin I., Tucker C., Smith D., Oechsle O., Phelan A., et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–1. DOI:10.1016/S0140-6736(20)30304-4; Hussain S., Gallagher T. SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus. Virus Res. 2010;153(2):299–304. DOI:10.1016/j.virusres.2010.08.017; Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69–71. DOI:10.5582/bst.2020.01020; Sciamanna I., Sinibaldi-Vallebona P., Serafino A., Spadafora C. LINE-1 encoded reverse Transcriptase as a target in cancer therapy. Front Biosci (Landmark Ed). 2018;23:1360–9. DOI:10.2741/4648; Chen L., Zhong L. Genomics functional analysis and drug screening of SARS-CoV-2. Genes Dis. 2020;7(4):542–50. DOI:10.1016/j.gendis.2020.04.002; Sardar R., Satish D., Birla S., Gupta D. Comparative analyses of SARCoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. Heliyon. 2020;6(9):e04658. DOI:10.1016/j.heliyon.2020.e04658; Thanh Le T., Andreadakis Z., Kumar A., Gomez Roman R., Tollefsen S., Saville M., et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. DOI:10.1038/d41573-020-00073-5; https://www.surgonco.ru/jour/article/view/534
    • Accession Number:
      10.24060/2076-3093-2020-10-4-302-310
    • Online Access:
      https://doi.org/10.24060/2076-3093-2020-10-4-302-310
      https://doi.org/10.1016/s0140-6736(66)92364-6
      https://doi.org/10.1159/000149883
      https://doi.org/10.1093/oxfordjournals.aje.a121171
      https://doi.org/10.1016/s0140-6736(03)13077-2
      https://doi.org/10.1016/j.idc.2019.08.001
      https://doi.org/10.1016/j.ijid.2020.01.009
      https://doi.org/10.1021/acs.jproteome.0c00129
      https://doi.org/10.7150/ijbs.45134
      https://doi.org/10.1038/s41579-018-0118-9
    • Rights:
      Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие статью в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
    • Accession Number:
      edsbas.6305B76