Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Mechanisms of SARS-CoV-2 virus effects on prostate tissues, including associations with patient hormonal state and postvaccination reactions ; Механизмы воздействия вируса SARS-CoV-2 на ткань предстательной железы, включая ассоциации с гормональным статусом пациента и поствакцинальные реакции

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      "PH "ABV-Press"", LLC
    • Publication Date:
      2022
    • Collection:
      Andrology and Genital Surgery (E-Journal) / Андрология и генитальная хирургия
    • Abstract:
      Nowadays, the most notable negative effects of SARS-CoV-2 are the pulmonary manifestations as well as cardiovascular system damage. Evaluation of postvaccination changes in the male reproductive system and analysis of their mechanisms seem to be important because of their direct effect on fertility. Thus, it may play a significant role in perspective. Studies based on the application of fluorescence in situ hybridization showed that most acini epithelial cells, as well as some mesenchymal and endothelial cells were positive for SARS-CoV-2 RNA. As for co-expression of the ACE2 cell receptor and the serine protease TMPRSS2, which the virus uses to enter cells, it was also detected in most prostate epithelial and stromal cells. The mechanism of prostate damage in COVID-19 may also be related to dysregulation of the renin-angiotensin system. Increased levels of angiotensin-2 secretion in the prostate in patients with benign prostatic hyperplasia may increase the effect of the virus directly on the cells of the organ. These mechanisms may explain the elevated serum prostatic specific antigen levels in patients with benign prostatic hyperplasia during the active period of COVID-19. Non-specific mechanism of prostate damage is connected with coagulopathy development – thrombosis of venous plexus and hemodynamic disturbances, which can cause secondary damage of parenchyma. There is a definite relationship between the hormonal status of the patient and the severity of the infection – low levels of both testosterone and dihydrotestosterone contribute to the development of severe complications in patients infected with SARS-CoV-2. The possibility of using testosterone drugs in patients with hypogonadism and COVID-19 as an alternative treatment option – to suppress the cytokine storm phenomenon – is being considered. Patients with a history of prostate cancer, with localized prostate cancer in the absence of metastases participated in vaccine studies – among the side effects of vaccination in several cases only regional ...
    • File Description:
      application/pdf
    • Relation:
      https://agx.abvpress.ru/jour/article/view/583/471; Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–80.e8. DOI:10.1016/j.cell.2020.02.052; Song H., Seddighzadeh B., Cooperberg M.R., Huang F.W. Expression of ACE2, the SARS-CoV-2 receptor, and TMPRSS2 in prostate epithelial cells. Eur Urol 2020;78(2):296–8. DOI:10.1016/j.eururo.2020.04.065; Tur-Kaspa I., Tur-Kaspa T., Hildebrand G., Cohen D. COVID-19 may affect male fertility but is not sexually transmitted: a systematic review. F S Rev 2021;2(2):140–9. DOI:10.1016/j.xfnr.2021.01.002; Wong D.W.L., Klinkhammer B.M., Djudjaj S. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells 2021;10(8):1900. DOI:10.3390/cells10081900; Haghpanah A., Masjedi F., Salehipour M. et al. Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and exacerbation of its related symptoms?: a systematic review. Prostate Cancer Prostatic Dis 2022;25(1):27–38. DOI:10.1038/s41391-021-00388-3; Cinislioglu A.E., Demirdogen S.O., Cinislioglu N. et al. Variation of serum PSA levels in COVID-19 infected male patients with benign prostatic hyperplasia (BPH): a prospective cohort studys. Urology 2022;159:16–21. DOI:10.1016/j.urology.2021.09.016; Wichmann D., Sperhake J.P., Lütgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 2020;173(4):268–77. DOI:10.7326/M20-2003; Peng F., Li H., Ning Z. et al. CD147 and prostate cancer: a systematic review and meta-analysis. PLoS One 2016;11(9):e0163678. DOI:10.1371/journal.pone.0163678; Shilts J., Crozier T.W.M., Greenwood E.J.D. et al. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep 2021;11(1):413. DOI:10.1038/s41598-020-80464-1; Ragotte R.J., Pulido D., Donnellan F.R. et al. Human basigin (CD147) does not directly interact with SARS-CoV-2 spike glycoprotein. mSphere 2021;6(4):e0064721. DOI:10.1128/mSphere.00647-21; Fenizia C., Galbiati S., Vanetti C. et al. SARS-CoV-2 entry: at the crossroads of CD147 and ACE2. Cells 2021;10(6):1434. DOI:10.3390/cells10061434; Chekol Abebe E., Mengie Ayele T., Tilahun Muche Z., Asmamaw Dejenie T. Neuropilin 1: a novel entry factor for SARS-CoV-2 infection and a potential therapeutic target. Biologics 2021;15:143–52. DOI:10.2147/BTT.S307352; Tse B.W.C., Volpert M., Ratther E. et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017;36(24):3417–27. DOI:10.1038/onc.2016.482; Gatti G., Quintar A.A., Andreani V. et al. Expression of toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer. Prostate 2009;69(13):1387–97. DOI:10.1002/pros.20984; Ou T., Lilly M., Jiang W. The pathologic role of toll-like receptor 4 in prostate cancer. Front Immunol 2018;9:1188. DOI:10.3389/fimmu.2018.01188; Khanmohammadi S., Rezaei N. Role of toll-like receptors in the pathogenesis of COVID-19. J Med Virol 2021;93(5):2735–9. DOI:10.1002/jmv.26826; Salciccia S., Del Giudice F., Eisenberg M.L. et al. Testosterone target therapy: focus on immune response, controversies and clinical implications in patients with COVID-19 infection. Ther Adv Endocrinol Metab 2021;12:20420188211010105. DOI:10.1177/20420188211010105; Acheampong D.O., Barffour I.K., Boye A. et al. Male predisposition to severe COVID-19: review of evidence and potential therapeutic prospects. Biomed Pharmacother 2020;131:110748. DOI:10.1016/j.biopha.2020.110748; Mjaess G., Karam A., Aoun F. et al. COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Prog Urol 2020;30(10):484–7. DOI:10.1016/j.purol.2020.05.007; Mauvais-Jarvis F. Do anti-androgens have potential as therapeutics for COVID-19? Endocrinology 2021;162(8):bqab114. DOI:10.1210/endocr/bqab114; Rastrelli G., Di Stasi V., Inglese F. et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021;9(1):88–98. DOI:10.1111/andr.12821; Schroeder M., Schaumburg B., Mueller Z. et al. High estradiol and low testosterone levels are associated with critical illness in male but not in female COVID-19 patients: a retrospective cohort study. Emerg Microbes Infect 2021;10(1):1807–18. DOI:10.1080/22221751.2021.1969869; Ma L., Xie W., Li D. et al. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. medRxiv (preprint) 2020. DOI:10.1101/2020.03.21.20037267; Cattrini C., Bersanelli M., Latocca M.M. et al. Sex hormones and hormone therapy during COVID-19 pandemic: implications for patients with cancer. Cancers (Basel) 2020;12(8):2325. DOI:10.3390/cancers12082325; Di Zazzo E., Galasso G., Giovannelli P. et al. Estrogens and their receptors in prostate cancer: therapeutic implications. Front Oncol 2018;8:2. DOI:10.3389/fonc.2018.00002; Montopoli M., Zumerle S., Vettor R. et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol 2020;31(8):1040–5. DOI:10.1016/j.annonc.2020.04.479; Duarte M.B.O., Leal F., Argenton J.L.P., Carvalheira J.B.C. Impact of androgen deprivation therapy on mortality of prostate cancer patients with COVID-19: a propensity score-based analysis. Infect Agent Cancer 2021;16(1):66. DOI:10.1186/s13027-021-00406-y; Jin J.M., Bai P., He W. et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health 2020;8:152. DOI:10.3389/fpubh.2020.00152; Baughn L.B., Sharma N., Elhaik E. et al. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clin Proc 2020;95(9):1989–99. DOI:10.1016/j.mayocp.2020.06.018; Liontos M., Terpos E., Kunadis E. et al. Treatment with abirate rone or enzalutamide does not impair immunological response to COVID-19 vaccination in prostate cancer patients. Prostate Cancer Prostatic Dis 2022;25(1):117–8. DOI:10.1038/s41391-021-00455-9; Safrai M., Herzberg S., Imbar T. et al. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters. Reprod Biomed Online 2022;44(4):685–8. DOI:10.1016/j.rbmo.2022.01.008; Corti C., Curigliano G. Commentary: SARS-CoV-2 vaccines and cancer patients. Ann Oncol 2021;32(4):569–71. DOI:10.1016/j.annonc.2020.12.019; Nawwar A.A., Searle J., Singh R., Lyburn I.D. Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] Choline PET/CT – not only an FDG finding. Eur J Nucl Med Mol Imaging 2021;48(8):2657–8 DOI:10.1007/s00259-021-05279-2; Wong F.C., Martiniova L., Masrani A., Ravizzini G.C. 18F-Fluciclovine-avid reactive axillary lymph nodes after COVID-19 vaccination. Clin Nucl Med 2022;47(2):154–5. DOI:10.1097/RLU.0000000000003844; Albano D., Volpi G., Dondi F. et al. COVID-19 vaccination manifesting as unilateral lymphadenopathies detected by 18F-Сholine PET/CT. Clin Nucl Med 2022;47(2):e187–9. DOI:10.1097/RLU.0000000000003951; Oprea-Lager D.E., Vincent A.D., van Moorselaar R.J. et al. Dual-phase PET-CT to differentiate [18F]Fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One 2012;7(10):e48430. DOI:10.1371/journal.pone.0048430; https://agx.abvpress.ru/jour/article/view/583
    • Accession Number:
      10.17650/2070-9781-2022-23-3-41-47
    • Online Access:
      https://agx.abvpress.ru/jour/article/view/583
      https://doi.org/10.17650/2070-9781-2022-23-3-41-47
    • Rights:
      Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
    • Accession Number:
      edsbas.64E0ADC9