Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Regional soil profile data reveals the predominant role of geomorphology and geology in accurately deriving digital soil texture maps in a tropical area

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      University of Malakand (UOM); Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD Occitanie )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM); Département Systèmes Biologiques (Cirad-BIOS); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad); Office national des forêts (ONF); SILVA (SILVA); AgroParisTech-Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Laboratoire de Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant (PIAF); Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA); Ecologie des forêts de Guyane (UMR ECOFOG); Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Forêts et Sociétés (UPR Forêts et Sociétés); Département Environnements et Sociétés (Cirad-ES); ANR-10-LABX-0025,CEBA,CEnter of the study of Biodiversity in Amazonia(2010)
    • Publication Information:
      CCSD
    • Publication Date:
      2025
    • Collection:
      Université de Guyane: HAL-UG
    • Abstract:
      Accurate information related to soil texture is essential for understanding key biological, chemical, and hydrological processes. However, soil data is scarce and unevenly distributed, especially in tropical regions, and global soil information products lack regional assessments, leading to high uncertainty. Here, we leveraged an unprecedented dataset of soil observations in a particularly poorly documented region, French Guiana, to identify the drivers of soil texture in such territory, develop digital soil maps of textural components, and provide an independent assessment of existing soil products at a regional scale. Specifically, we employed the random forest (RF) model to predict sand, clay and silt contents from multiple environmental variables describing geology, climate, and geomorphology. Results were evaluated through k-fold random and spatial cross-validation. We used our model to derive a soil texture map for French Guiana. We tested our map and global soil texture maps from the Harmonized World Soil Database (HWSD) and SoilGrids against 72 independent soil profiles collected in the region. Geomorphology and geology were the most important predictors of sand, clay, and silt contents in our model, yielding relatively good predictions (random cross-validation: R2 = 0.54, 0.76, and 0.10; spatial cross-validation: R2=0.26, 0.64 and 0.05; RMSE=10.92%, 6.38%, and 6.50%, for sand, clay, and silt contents, respectively). When evaluated on the independent dataset, both SoilGrids and HWSD exhibited poor performance, characterised by lower R2 (<0.07) and higher RMSE values (> 13%). Furthermore, HWSD and SoilGrids failed to capture the spatial heterogeneity of soil texture in the region, calling for caution when using such global products at local scale. Overall, our study emphasises the need for sustained effort in assembling distributed soil information, as well as meaningful soil predictors at local and regional scales.
    • Accession Number:
      10.2139/ssrn.4789279
    • Online Access:
      https://hal.science/hal-04981892
      https://hal.science/hal-04981892v1/document
      https://hal.science/hal-04981892v1/file/ssrn-4789279-1.pdf
      https://doi.org/10.2139/ssrn.4789279
    • Rights:
      http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.68C55226