Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Gated Residual Kolmogorov-Arnold Networks for Mixtures of Experts

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Centre de Recherche en Économie et Statistique (CREST); Ecole Nationale de la Statistique et de l'Analyse de l'Information Bruz (ENSAI)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris)-Centre National de la Recherche Scientifique (CNRS); Dauphine Recherches en Management (DRM); Université Paris Dauphine-PSL; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
    • Publication Information:
      CCSD
    • Publication Date:
      2025
    • Collection:
      GENES (Groupe des Écoles Nationales d'Économie et Statistique): HAL
    • Abstract:
      International audience ; This paper introduces KAMoE, a novel Mixture of Experts (MoE) framework based on Gated Residual KolmogorovArnold Networks (GRKAN). We propose GRKAN as an alternative to the traditional gating function, aiming to enhance efficiency and interpretability in MoE modeling. Through extensive experiments on digital asset markets and real estate valuation, wedemonstrate that KAMoE consistently outperforms traditional MoE architectures across various tasks and model types. Our results show that GRKAN exhibits superior performance compared to standard Gating Residual Networks, particularly in LSTMbased models for sequential tasks. We also provide insights into the trade-offs between model complexity and performance gains in MoE and KAMoE architectures.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2409.15161; ARXIV: 2409.15161
    • Online Access:
      https://hal.science/hal-04923946
      https://hal.science/hal-04923946v1/document
      https://hal.science/hal-04923946v1/file/2409.15161v2.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.69DDD464