Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

The LOFAR radio environment

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Kapteyn Astronomical Institute Groningen; University of Groningen Groningen; Netherlands Institute for Radio Astronomy (ASTRON); Max Planck Institute for Astrophysics; Max-Planck-Gesellschaft; Department of process and energy; Delft University of Technology (TU Delft); National Radio Astronomy Observatory Charlottesville (NRAO); National Radio Astronomy Observatory (NRAO); Leiden Observatory Leiden; Universiteit Leiden = Leiden University; Observatoire de Paris; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL); Laboratoire de Chimie Physique Moléculaire EPFL Lausanne (LCPM); Ecole Polytechnique Fédérale de Lausanne (EPFL); University of Southampton; Harvard-Smithsonian Center for Astrophysics (CfA); Harvard University-Smithsonian Institution; University of Edinburgh (Edin.); Jacobs University = Constructor University Bremen; Leibniz-Institut für Astrophysik Potsdam (AIP); Astronomisches Institut der Ruhr-Universität Bochum; Ruhr University Bochum = Ruhr-Universität Bochum (RUB); Max-Planck-Institut für Radioastronomie (MPIFR); Radboud University Nijmegen; Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E); Observatoire des Sciences de l'Univers en région Centre (OSUC); Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris; Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales Paris (CNES); Jodrell Bank Centre for Astrophysics; University of Manchester Manchester; University of Amsterdam Amsterdam = Universiteit van Amsterdam (UvA); Thüringer Landessternwarte Tautenburg (TLS); Oxford Astrophysics; University of Oxford; Center for Agricultural Research in Suriname CELOS and Department of Biology; Anton de Kom Universiteit van Suriname - Anton de Kom University of Suriname Paramaribo (UVS); Center for Information Technology CIT; Université de Groningen; Department of Astronomy and Astrophysics PennState; Pennsylvania State University (Penn State); Penn State System-Penn State System; Rhodes University Grahamstown; Astronomical Institute Anton Pannekoek (AI PANNEKOEK); Department of Reproduction and Development; Erasmus University Rotterdam; Argelander-Institut für Astronomie (AlfA); Rheinische Friedrich-Wilhelms-Universität Bonn
    • Publication Information:
      CCSD
      EDP Sciences
    • Publication Date:
      2013
    • Collection:
      Archive de l'Observatoire de Paris (HAL)
    • Abstract:
      International audience ; Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions: Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1210.0393v1; ARXIV: 1210.0393v1; BIBCODE: 2013A&A.549A.11O
    • Accession Number:
      10.1051/0004-6361/201220293
    • Online Access:
      https://insu.hal.science/insu-01289809
      https://insu.hal.science/insu-01289809v1/document
      https://insu.hal.science/insu-01289809v1/file/aa20293-12.pdf
      https://doi.org/10.1051/0004-6361/201220293
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.6C209D21