Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Matrix completion by singular value thresholding: sharp bounds

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Centre de Recherche en Économie et Statistique (CREST); Ecole Nationale de la Statistique et de l'Analyse de l'Information Bruz (ENSAI); Groupe des Écoles Nationales d'Économie et Statistique (GENES)-Groupe des Écoles Nationales d'Économie et Statistique (GENES)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris); Groupe des Écoles Nationales d'Économie et Statistique (GENES)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS); Modélisation aléatoire de Paris X (MODAL'X); Université Paris Nanterre (UPN)-Centre National de la Recherche Scientifique (CNRS)
    • Publication Information:
      CCSD
      Institute of Mathematical Statistics
    • Publication Date:
      2015
    • Collection:
      Université Paris Lumières: HAL
    • Abstract:
      International audience ; We consider the matrix completion problem where the aim is to esti-mate a large data matrix for which only a relatively small random subset of its entries is observed. Quite popular approaches to matrix completion problem are iterative thresholding methods. In spite of their empirical success, the theoretical guarantees of such iterative thresholding methods are poorly understood. The goal of this paper is to provide strong theo-retical guarantees, similar to those obtained for nuclear-norm penalization methods and one step thresholding methods, for an iterative thresholding algorithm which is a modification of the softImpute algorithm. An im-portant consequence of our result is the exact minimax optimal rates of convergence for matrix completion problem which were known until know only up to a logarithmic factor.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1502.00146; ARXIV: 1502.00146
    • Online Access:
      https://hal.science/hal-01111757
      https://hal.science/hal-01111757v1/document
      https://hal.science/hal-01111757v1/file/tresholding_12_Jan.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.7176723B