Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

PULP: Achieving Privacy and Utility Trade-off in User Mobility Data

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      GIPSA - Systèmes non linéaires et complexité (GIPSA-SYSCO); Département Automatique (GIPSA-DA); Grenoble Images Parole Signal Automatique (GIPSA-lab); Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Grenoble Images Parole Signal Automatique (GIPSA-lab); Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ); Distribution, Recherche d'Information et Mobilité (DRIM); Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); CITI Centre of Innovation in Telecommunications and Integration of services (CITI); Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria); Privacy Models, Architectures and Tools for the Information Society (PRIVATICS); Centre Inria de l'Université Grenoble Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre Inria de Lyon; Institut National de Recherche en Informatique et en Automatique (Inria); IBM Research Laboratory Zurich; IBM Research Zurich; Université de Lyon-Institut National des Sciences Appliquées (INSA); LABEX IMU (ANR-0-LABX-0088)
    • Publication Information:
      CCSD
    • Publication Date:
      2017
    • Collection:
      Université Grenoble Alpes: HAL
    • Subject Terms:
    • Abstract:
      International audience ; Leveraging location information in location-based services leads to improving service utility through geo-contextualization. However, this raises privacy concerns as new knowledge can be inferred from location records, such as user's home and work places, or personal habits. Although Location Privacy Protection Mechanisms (LPPMs) provide a means to tackle this problem, they often require manual configuration posing significant challenges to service providers and users. Moreover, their impact on data privacy and utility is seldom assessed. In this paper, we present PULP, a model-driven system which automatically provides user-specific privacy protection and contributes to service utility via choosing adequate LPPM and configuring it. At the heart of PULP is nonlinear models that can capture the complex dependency of data privacy and utility for each individual user under given LPPM considered, i.e., Geo-Indistinguishability and Promesse. According to users' preferences on privacy and utility, PULP efficiently recommends suitable LPPM and corresponding configuration. We evaluate the accuracy of PULP's models and its effectiveness to achieve the privacy-utility trade-off per user, using four real-world mobility traces of 770 users in total. Our extensive experimentation shows that PULP ensures the contribution to location service while adhering to privacy constraints for a great percentage of users, and is orders of magnitude faster than non-model based alternatives.
    • Online Access:
      https://hal.science/hal-01578635
      https://hal.science/hal-01578635v1/document
      https://hal.science/hal-01578635v1/file/PID4910579.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.7AAA2AFB