Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Towards exploring adversarial learning for anomaly detection in complex driving scenes

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Date:
      2023
    • Collection:
      Clausthal University of Technology: Publications
    • Abstract:
      One of the many Autonomous Systems (ASs), such as autonomous driving cars, performs various safety-critical functions. Manyof these autonomous systems take advantage of Artificial Intelligence (AI) techniques to perceive their environment. But these perceiving components could not be formally verified, since, the accuracy of such AI-based components has a high dependency on the quality of training data. So Machine learning (ML) based anomaly detection, a technique to identify data that does not belong to the training data could be used as a safety measuring indicator during the development and operational time of such AI-based components. Adversarial learning, a sub-field of machine learning has proven its ability to detect anomalies in images and videos with impressive results on simple data sets. Therefore, in this work, we investigate and provide insight into the performance of such techniques on a highly complex driving scenes dataset called Berkeley DeepDrive.
    • File Description:
      electronic resource; remote; Computermedien; Online-Ressource; 22 Seiten
    • ISBN:
      978-1-85501-907-2
      1-85501-907-8
    • Relation:
      ArXiv.org -- https://arxiv.org; https://doi.org/10.48550/arXiv.2307.05256; https://dokumente.ub.tu-clausthal.de/receive/clausthal_mods_00002437; https://dokumente.ub.tu-clausthal.de/servlets/MCRFileNodeServlet/clausthal_derivate_00002060/2307.05256.pdf; http://uri.gbv.de/document/gvk:ppn:1855019078
    • Accession Number:
      10.48550/arXiv.2307.05256
    • Online Access:
      https://doi.org/10.48550/arXiv.2307.05256
      https://dokumente.ub.tu-clausthal.de/receive/clausthal_mods_00002437
      https://dokumente.ub.tu-clausthal.de/servlets/MCRFileNodeServlet/clausthal_derivate_00002060/2307.05256.pdf
      http://uri.gbv.de/document/gvk:ppn:1855019078
    • Rights:
      https://creativecommons.org/licenses/by/4.0/ ; public ; info:eu-repo/semantics/openAccess
    • Accession Number:
      edsbas.7CC9FD05