Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Characterization of translation invariant MMD on R d and connections with Wasserstein distances

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Institut Camille Jordan (ICJ); École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS); Probabilités, statistique, physique mathématique (PSPM); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL); Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB); Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC); ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020)
    • Publication Information:
      HAL CCSD
    • Publication Date:
      2023
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • Abstract:
      Kernel mean embeddings and maximum mean discrepancies (MMD) associated with positive semi-definite kernels are important tools in machine learning that allow to compare probability measures and sample distributions. Two kernels are said equivalent if their associated MMDs are equal. We characterize the equivalence of kernels in terms of their variogram and deduce that MMDs are in one to one correspondance with negative semi-definite functions. As a consequence, we provide a full characterization of translation invariant MMDs on R d that are parametrized by a spectral measure and a semi-definite symmetric matrix. Furthermore, we investigate the connections between translation invariant MMDs and Wasserstein distances on R d. We show in particular that convergence with respect to the MMD associated with the Energy Kernel of order α ∈ (0, 1) implies convergence with respect to the Wasserstein distance of order β < α. We also provide examples of kernels metrizing the Wasserstein space of order α ≥ 1.
    • Relation:
      hal-03855093; https://hal.science/hal-03855093; https://hal.science/hal-03855093v2/document; https://hal.science/hal-03855093v2/file/RKHS%20%281%29.pdf
    • Online Access:
      https://hal.science/hal-03855093
      https://hal.science/hal-03855093v2/document
      https://hal.science/hal-03855093v2/file/RKHS%20%281%29.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.7D10A192