Abstract: International audience ; In recent years, a significant theoretical effort has been made towards a dynamical description of quarkonia inside the Quark-Gluon Plasma (QGP), using the open quantum systems formalism. In this framework, one can get a real-time description of a quantum system (here the quarkonium) in interaction with a thermal bath (the QGP) by integrating out the bath degrees of freedom and studying the system reduced density matrix. We investigate the real-time dynamics of a correlated heavy quark-antiquark pair inside the QGP using a quantum master equation previously derived from first QCD principles in [4]. The full equation is directly resolved in 1D to lessen computing costs and is used for the first time to gain insight on the dynamics in both a static and evolving medium following a Björken-like temperature evolution.
No Comments.