Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Improved modeling of Mars’ HDO cycle using a Mars’ Global Climate Model

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      PLANETO - LATMOS; Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Instituto de Astrofísica de Andalucía (IAA); Consejo Superior de Investigaciones Cientificas España = Spanish National Research Council Spain (CSIC); Space Research Institute of the Russian Academy of Sciences (IKI); Russian Academy of Sciences Moscow (RAS); Laboratoire de Météorologie Dynamique (UMR 8539) (LMD); Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris; École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL); Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
    • Publication Information:
      HAL CCSD
      Wiley-Blackwell
    • Publication Date:
      2022
    • Collection:
      École des Ponts ParisTech: HAL
    • Abstract:
      International audience ; HDO and the D/H ratio are essential to understand Mars past and present climate, in particular with regard to the evolution through ages of the Martian water cycle. We present here new modeling developments of the HDO cycle with the LMD Mars GCM. The present study aims at exploring the behaviour of the D/H ratio cycle and its sensitivity to the modeling of water ice clouds and the formulation of the fractionation by condensation. Our GCM simulations are compared with observations provided by the Atmospheric Chemistry Suite (ACS) on board the ESA/Roscosmos Trace Gas Orbiter, and reveal that the model quite well reproduces the temperature and water vapor fields, which offers a good basis for representing the D/H ratio cycle. The comparison also emphasizes the importance of modelling the effect of supersaturation, resulting from the microphysical processes of water ice clouds, to correctly account for the water vapor and the D/H ratio of the middle-to-upper atmosphere. This work comes jointly with a detailed comparison of the measured D/H profiles by TGO/ACS and the model outputs, conducted in the companion paper of Rossi et al. 2022 (this issue).
    • Relation:
      insu-03740754; https://insu.hal.science/insu-03740754; https://insu.hal.science/insu-03740754/document; https://insu.hal.science/insu-03740754/file/essoar.Montmessin.improvedpdf.pdf
    • Accession Number:
      10.1029/2022JE007192
    • Online Access:
      https://doi.org/10.1029/2022JE007192
      https://insu.hal.science/insu-03740754
      https://insu.hal.science/insu-03740754/document
      https://insu.hal.science/insu-03740754/file/essoar.Montmessin.improvedpdf.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.95B087B5