Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC); Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS); Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo); Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Georgia Tech Lorraine Metz; Ecole Nationale Supérieure des Arts et Metiers Metz-Georgia Institute of Technology Atlanta -Ecole Supérieure d'Electricité - SUPELEC (FRANCE)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Zone Atelier du Bassin de la Moselle (LTSER - LTER); Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-LTSER Réseau des Zones Ateliers (RZA); Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS); Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS); ANR-20-THIA-0010,LOR-AI,Lorraine Artificicial Intelligence(2020); European Project: 101058625,iMagine
    • Publication Information:
      CCSD
    • Publication Date:
      2023
    • Collection:
      Université de Franche-Comté (UFC): HAL
    • Abstract:
      Recent works show that the data distribution in a network's latent space is useful for estimating classification uncertainty and detecting Out-Of-Distribution (OOD) samples. To obtain a well-regularized latent space that is conducive for uncertainty estimation, existing methods bring in significant changes to model architectures and training procedures. In this paper, we present a lightweight, fast, and high-performance regularization method for Mahalanobis distance (MD)-based uncertainty prediction, and that requires minimal changes to the network's architecture. To derive Gaussian latent representation favourable for MD calculation, we introduce a self-supervised representation learning method that separates in-class representations into multiple Gaussians. Classes with non-Gaussian representations are automatically identified and dynamically clustered into multiple new classes that are approximately Gaussian. Evaluation on standard OOD benchmarks shows that our method achieves state-of-the-art results on OOD detection with minimal inference time, and is very competitive on predictive probability calibration. Finally, we show the applicability of our method to a real-life computer vision use case on microorganism classification.
    • Relation:
      info:eu-repo/grantAgreement//101058625/EU/Imaging data and services for aquatic science/iMagine
    • Accession Number:
      10.48550/arXiv.2305.13849
    • Online Access:
      https://hal.science/hal-04034465
      https://hal.science/hal-04034465v2/document
      https://hal.science/hal-04034465v2/file/2305.13849.pdf
      https://doi.org/10.48550/arXiv.2305.13849
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.95C8A4D5