Item request has been placed!
×
Item request cannot be made.
×

Patrones de circulación de corrientes en una zona insular del Caribe y su influencia en la descarga de efluentes. Caso de estudio San Andrés, Colombia ; Currents and circulation patterns in a Caribbean Island and their influence on effluent discharge. Case study: San Andrés, Colombia
Item request has been placed!
×
Item request cannot be made.
×

- Author(s): Espinosa Ordoñez, Paula Andrea
- Subject Terms:
550 - Ciencias de la tierra; 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica; Contaminantes del agua; Circulación atmosférica; Efluentes; Atmospheric circulation; Water pollutants; Effluent; Circulación; Corrientes; Olas; Marea; Viento; Trazadores pasivos; Current circulation; Wave-driven; Tide-driven; Wind-driven; Discharge- Document Type:
master thesis- Language:
Spanish; Castilian - Subject Terms:
- Additional Information
- Contributors: Osorio Arias, Andres Fernando; Osorio Cano, Juan David; Oceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad Nacional; Osorio Cano, Juan David 0000-0002-5324-7790
- Publication Information: Universidad Nacional de Colombia
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
Facultad de Minas
Medellín, Colombia
Universidad Nacional de Colombia - Sede Medellín - Publication Date: 2023
- Subject Terms:
- Abstract: ilustraciones, diagramas, mapas ; Los patrones de circulación de corrientes en aguas poco profundas pueden controlar procesos claves como el transporte y difusión de efluentes. En este estudio, se investigaron los patrones de circulación de corrientes y la influencia sobre las descargas de efluentes en la isla de San Andrés ubicada al noroeste del mar Caribe. Para caracterizar estos patrones se empleó el modelo numérico acoplado de olas y corrientes Delft Wave-Flow, calibrado y validado con datos de campo de corrientes, olas y marea. Los resultados revelaron que la marea ejerce una mayor influencia en la laguna arrecifal con velocidades entre 0.01 ms-1 y 0.04 ms-1. Las corrientes influenciadas por las olas alcanzaron velocidades entre 0.3 ms-1 - 0.75 ms-1 sobre la cresta de la barrera arrecifal. El viento ejerce influencia sobre las corrientes generando magnitudes de velocidad que oscilan entre 0.2 ms-1 y 0.8 ms-1 en la cresta de los arrecifes y en aguas poco profundas del oeste de la isla. En el análisis de estacionalidad de las corrientes, se encontró que durante el trimestre de diciembre, enero y febrero las magnitudes de las corrientes son máximas y pueden variar entre 0.6 ms-1 a 0.8 ms-1, mientras que para el trimestre de septiembre, octubre y noviembre las corrientes son mínimas con valores entre 0.15 ms-1 a 0.35 ms-1. Los escenarios de eventos sintéticos extremos muestran que las corrientes pueden alcanzar velocidades entre 0.75 ms-1 y 1.2 ms-1 cuando se propagan olas desde el norte con una altura de ola significante de 3.5 m. Finalmente se evaluó el transporte de las descargas de efluentes en el costado oeste y al norte de la isla, bajo condiciones estacionales y extremas. En condiciones extremas se encontró que el 10% de la concentración de la descarga en el norte cubre áreas de la isla con presencia de ecosistemas marinos sensibles tales como, corales, pastos y manglares. El presente estudio permitiría contribuir a la formulación de lineamientos técnicos y toma de decisiones informadas en relación con ...
- File Description: 105 páginas; application/pdf
- Relation: RedCol; LaReferencia; Adcroft, A., Hallberg, R., Dunne, J. P., Samuels, B. L., Galt, J. A., Barker, C. H., & Payton, D. (2010). Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters, 37(18). https://doi.org/10.1029/2010GL044689; Akter, A., & Tanim, A. H. (2021). Salinity Distribution in River Network of a Partially Mixed Estuary. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020055. https://doi.org/10.1061/(asce)ww.1943-5460.0000621; Albarakati, A. M. A., Ahmad, F., Albarakati, A. M. A., & Ahmad, F. (2012). Water column conditions in a coastal lagoon near Jeddah, Red Sea Red Sea Lagoon Water column Open access under CC BY-NC-ND license. 676. OCEANOLOGIA, 54(4), 675-685. https://doi.org/10.5697/oc.54-4.675; Andrade, C. A., & Barton, E. D. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research: Oceans, 105(C11), 26191-26201. https://doi.org/10.1029/2000JC000300; Aucan, J., Desclaux, T., Le Gendre, R., Liao, V., & Andréfouët, S. (2021). Tide and wave driven flow across the rim reef of the atoll of Raroia (Tuamotu, French Polynesia). Marine Pollution Bulletin, 171, 112718. https://doi.org/10.1016/j.marpolbul.2021.112718; Azouri, A., Roeber, V., & Luther, D. S. (2018). THE RESPONSE OF HARBOR ENVIRONMENTS PROTECTED BY IRREGULAR FRINGING REEF SYSTEMS TO STRONG GRAVITY WAVE FORCING - A CASE STUDY. Coastal Engineering Proceedings, 1(36), currents.44. https://doi.org/10.9753/icce.v36.currents.44; Booij, N. (1983). A note on the accuracy of the mild-slope equation. Coastal Engineering, 7(3), 191-203. https://doi.org/https://doi.org/10.1016/0378-3839(83)90017-0; Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622; Brodie, K. L., & Cohn, N. T. (2021). Coastal Geology: Coastal Landforms and Processes. En D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (Second Edition) (pp. 894-905). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.12483-2; Brown, J., Colling, A., Park, D., Phillips, J., Rothery, D., & Wright, J. (1999). Chapter 2 - Tides. En The Open University (Ed.), Waves, Tides and Shallow-Water Processes (pp. 50-86). Butterworth-Heinemann. https://doi.org/10.1016/B978-008036372-1/50002-7; Caldwell, P. C., Merrifield, M. A., & Thompson, P. R. (2015). Sea level measured by tide gauges from global oceans — the Joint Archive for Sea Level holdings (NCEI Accession 0019568). NOAA National Centers for Environmental Information, 5.5.; Camp, E. F., Edmondson, J., Doheny, A., Rumney, J., Grima, A. J., Huete, A., & Suggett, D. J. (2019). Mangrove lagoons of the Great Barrier Reef support coral populations persisting under extreme environmental conditions. Marine Ecology Progress Series, 625, 1-14. https://www.int-res.com/abstracts/meps/v625/p1-14/; Chevalier, C., Devenon, J. L., Pagano, M., Rougier, G., Blanchot, J., & Arfi, R. (2017). The atypical hydrodynamics of the Mayotte Lagoon (Indian Ocean): Effects on water age and potential impact on plankton productivity. Estuarine, Coastal and Shelf Science, 196, 182-197. https://doi.org/https://doi.org/10.1016/j.ecss.2017.06.027; Chevalier, C., Devenon, J. L., Rougier, G., & Blanchot, J. (2015). Hydrodynamics of the Toliara Reef Lagoon (Madagascar): Example of a Lagoon Influenced by Waves and Tides. Coastal Research, 31(6), 1403-1416. https://doi.org/10.2112/JCOASTRES-D-13-00077.1; Chow, A. C., Verbruggen, W., Morelissen, R., Al-Osairi, Y., Ponnumani, P., Lababidi, H. M. S., Al-Anzi, B., & Adams, E. E. (2019). Numerical prediction of background buildup of salinity due to desalination brine discharges into the northern Arabian Gulf. Water (Switzerland), 11(11), 1-14. https://doi.org/10.3390/w11112284; Copernicus. (2018). “ERA5 Hourly Data on Single Levels from 1979 to Present.” Retrieved (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview). https://doi.org/10.24381/cds.adbb2d47; Coralina. (2008). Plan de Acción Institucional 2016-2019 (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004; Coronado, C., Candela, J., Iglesias-Prieto, R., Sheinbaum, J., López, M., & Ocampo-Torres, F. J. (2007). On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs, 26(1), 149-163. https://doi.org/10.1007/s00338-006-0175-9; DANE. (2019). Encuesta de hábitat y usos socioeconómicos, 2019 archipiélago de San Andrés, Providencia y Santa Catalina.; DANE. (2020). Boletín Técnico Encuesta de Hábitat y Usos Socioeconómicos 2019.; Deltares. (2014). Delft3D-FLOW User Manual Hydro-Morphodynamics. 710.; Deltares, D. (2019). Conceptual Description - Wave current interaction. En Delft3D-Flow User Manual (p. 230).; Diaz, J. M., Barrios, L. M., Cendales, M. H., Garzón, J., Geister, J., López, M., Ospina, G. H., Parra, F., Pinzón, J., Vargas, B., Zapata, F., & Zea, S. (2000). Áreas Coralinas de Colombia. En J. M. Diaz (Ed.), Invemar: Vol. Sereie de (Número November).; Egon, A. (2009). Hydrodynamics of Lagoon Fringed by a Coral Reef.; Escobar, C. A., Velásquez, L., & Posada, F. (2015). Marine Currents in the Gulf of Urabá, Colombian Caribbean Sea. Journal of Coastal Research, 31(6), 1363-1374. https://doi.org/10.2112/JCOASTRES-D-14-00186.1; Espinosa-Ordoñez, P. A. (2020). Estudio de la disipación del oleaje en un arrecife de coral: Caso de estudio Isla de San Andrés, Colombia [Tesis de pregrado]. Universidad Nacional de Colombia.; Ezer, T., Heyman, W. D., Houser, C., & Kjerfve, B. (2012). Extreme flows and unusual water levels near a Caribbean coral reef: Was this a case of a «perfect storm»? Ocean Dynamics, 62(7), 1043-1057. https://doi.org/10.1007/s10236-012-0545-5; Fallatah, M. M., Kavil, Y. N., Shanas, P. R., Al-Farawati, R., Shaban, Y. A., Orif, M. I., Schmidt, M., Ghandourah, M. A., & Albarakati, A. (2021). Environmental impact assessment of desalination plants through observations and modeling over Central Red Sea-Yanbu and Rabig. Arabian Journal of Geosciences, 14(5). https://doi.org/10.1007/s12517-021-06729-9; Filali, M. B., & Bessenasse, M. (2018a). Brine outfall discharges modelling and design: Case of a desalination plant in algeria. Advances in Science, Technology and Innovation, 719-721. https://doi.org/10.1007/978-3-319-70548-4_213; Filali, M. B., & Bessenasse, M. (2018b). Brine outfall discharges modelling and design: Case of a desalination plant in algeria. Advances in Science, Technology and Innovation, 719-721. https://doi.org/10.1007/978-3-319-70548-4_213; Fourniotis, N. T., Leftheriotis, G. A., & Horsch, G. M. (2021). Towards enhancing tidally-induced water renewal in coastal lagoons. Environmental Fluid Mechanics, 21(2), 343-360. https://doi.org/10.1007/S10652-020-09776-0/METRICS; Fussalba, S., & Aguas, A. (2021). Análisis De Las Características Fisicoquímicas Y Microbiológicas De Las Aguas Costeras De San Andrés Isla, Asociados A La Operación Del Emisario Submarino Durante Los Años 2008, 2017 Y 2018.; García-Rentería, F.-F., Nieto, G. A. C., & Cortez, G. H. (2023). Evaluation of Wastewater Discharge Reduction Scenarios in the Buenaventura Bay. Water, 15(6). https://doi.org/10.3390/w15061027; Geister, J., & Díaz, J. (2007a). Ambientes arrecifales y geología de un archipiélago oceánico: San Andrés, Providencia y Santa Catalina. En INGEOMINAS. https://doi.org/http://dx.doi.org/10.1016/j.compositesb.2013.05.033; Geister, J., & Díaz, J. M. (2007b). Reef Environments and Geology of an Oceanic Archipelago: San Andrés, Old Providence and Sta. Catalina (Caribbean Sea, Colombia). 104.; Gómez Giraldo, A., Osorio, A., Toro, F., Osorio, J., Álvarez, O., & Arrieta, A. (2009). Patrón de circulación en Bahía Barbacoas y su influencia sobre el transporte de sedimentos hacia las islas del Rosario. Avances en Recursos Hidráulicos, 20, 21-39.; Gonzáles, O. C., & Hurtado, G. (2012). Caracterización climática del archipiélago de San Andrés y Providencia. pp (48-52) en CORALINA-INVEMAR, 2012. Gómez-López, D. I., C. Segura-Quintero, P. C. Sierra-Correa y J. Garay-Tinoco (Eds). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de. En Serie de publicaciones especiales, Invema, No. 28, p. 180 (28.a ed., Vol. 28). Serie de Publicaciones Especiales INVEMAR. http://www.invemar.org.co/redcostera1/invemar/docs/10447AtlasSAISeaflower.pdf; Grimaldi, C. M., Lowe, R. J., Benthuysen, J. A., Green, R. H., Reyns, J., Kernkamp, H., & Gilmour, J. (2022). Wave and Tidally Driven Flow Dynamics Within a Coral Reef Atoll off Northwestern Australia. Journal of Geophysical Research: Oceans, 127(3). https://doi.org/10.1029/2021JC017583; IDEAM. (2015). Estudio Nacional del Agua 2014. En Estudio Nacional del Agua 2014.; Invemar, & Coralina. (2020). Unidades Bióticas %7C Atlas de las Áreas Coralinas de Colombia. MiniAmbiente. https://areas-coralinas-de-colombia-invemar.hub.arcgis.com/pages/unidades-bioticas; Jonsson, I. G. (1966). WAVE BOUNDARY LAYERS AND FRICTION FACTORS. Coastal Engineering Proceedings, 10, 127-148.; Karimpour, A., & Chen, Q. (2017). Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox. Computers & Geosciences, 106, 181-189. https://doi.org/10.1016/J.CAGEO.2017.06.010; Lee, W., & Kaihatu, J. M. (2018). Effects of desalination on hydrodynamic process in Persian Gulf. http://marinecopernicus.eu/; Lentz, S. J., Churchill, J. H., Davis, K. A., Farrar, J. T., Pineda, J., & Starczak, V. (2016). The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea. Journal of Geophysical Research: Oceans, 121(2), 1360-1376. https://doi.org/10.1002/2015JC011141; Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8), 883-915. https://doi.org/https://doi.org/10.1016/j.coastaleng.2004.07.014; Lin, N., Marsooli, R., & Colle, B. A. (2019). Storm surge return levels induced by mid-to-late-twenty-first-century extratropical cyclones in the Northeastern United States. Climatic Change, 154(1), 143-158. https://doi.org/10.1007/s10584-019-02431-8; Lopera, L., Cardona, Y., & Zapata-Ramírez, P. A. (2020). Circulation in the Seaflower Reserve and Its Potential Impact on Biological Connectivity. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00385; Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009a). A numerical study of circulation in a coastal reef-lagoon system. Journal of Geophysical Research: Oceans, 114(6), 1-18. https://doi.org/10.1029/2008JC005081; Lowe, R. J., Falter, J. L., Monismith, S. G., & Atkinson, M. J. (2009b). Wave-driven circulation of a coastal reef-lagoon system. Journal of Physical Oceanography, 39(4), 873-893. https://doi.org/10.1175/2008JPO3958.1; Lykkebo, K., Heck, N., Reguero, B. G., Potts, D., Hovagimian, A., & Paytan, A. (2019). Biological and Physical Effects of Brine Discharge from the Carlsbad Desalination Plant and Implications for Future Desalination Plant Constructions. Water, 11, 21. https://doi.org/10.3390/w11020208; Madsen, O. S. (1995). Spectral wave-current bottom boundary layer flows. Proceedings of the Coastal Engineering Conference, 1, 384-398.; Madsen, O. S. ., Poon, Y. K., & Graber, H. C. (1988). Spectral wave attenuation by bottom friction: theory. Coastal Engineering Proceedings, 21, 492-504. https://doi.org/10.1061/9780872626874.035; Maggioni, F., Pujo-Pay, M., Aucan, J., Cerrano, C., Calcinai, B., Payri, C., Benzoni, F., Letourneur, Y., & Rodolfo-Metalpa, R. (2021). The Bouraké semi-enclosed lagoon (New Caledonia)- A natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions. Biogeosciences, 18(18), 5117-5140. https://doi.org/10.5194/bg-18-5117-2021; Mariño-Tapia, I., Silva-Casarín, R., Enriquez-Ortiz, C., Mendoza-Baldwin, E., Mancera, E. E., & Ruiz-Rentería, F. (2010). Wave transformation and wave-driven circulation on natural reefs under extreme hurricane conditions. COASTAL ENGINEERING. https://doi.org/10.9753/icce.v32.waves.28; Martyr-Koller, R. C., Kernkamp, H. W. J., van Dam, A., van der Wegen, M., Lucas, L. V., Knowles, N., Jaffe, B., & Fregoso, T. A. (2017). Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta. Estuarine, Coastal and Shelf Science, 192, 86-107. https://doi.org/10.1016/j.ecss.2017.04.024; Massel, S. R. (1989). Currents in coastal zone. En Elsevier Oceanography Series (Ed.), Hydrodynamics Of Coastal Zones (Vol. 48, pp. 253-275).; Monismith, S. G., Herdman, L. M. M., Ahmerkamp, S., & Hench, J. L. (2013). Wave Transformation and Wave-Driven Flow across a Steep Coral Reef. Journal of Physical Oceanography, 43(7), 1356-1379. https://doi.org/10.1175/JPO-D-12-0164.1; Monismith, S. G., Rogers, J. S., Koweek, D., & Dunbar, R. B. (2015). Frictional wave dissipation on a remarkably rough reef. Geophysical Research Letters, 42(10), 4063-4071. https://doi.org/10.1002/2015GL063804; Montoya, R. D., Menendez, M., & Osorio, A. F. (2018). Exploring changes in Caribbean hurricane-induced wave heights. Ocean Engineering, 163, 126-135. https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.05.032; Moustapha, S., Chevalier, C., Sow, B., Pagano, M., & Devenon, J.-L. (2021). Coupled effects of tide and swell on water renewal in a meso-tidal channel lagoon: Case of the Toliara Lagoon (Madagascar). Estuarine, Coastal and Shelf Science, 259, 107463. https://doi.org/https://doi.org/10.1016/j.ecss.2021.107463; Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. Advanced Series on Ocean Engineering, 4, 299-308.; Niepelt, A., Bleninger, T., & Jirka, G. (2008). Coupling of Hydrodynamic Models for Brine Discharge Analysis. https://www.researchgate.net/publication/228369390; Nortek. (2017). The Comprehensive Manual: Part 2: Waves. https://support.nortekgroup.com/hc/en-us/articles/360029839331-The-Comprehensive-Manual-ADCP; Olarte, P. M. (2019). Climatología del transporte potencial de sedimentos costeros inducido por oleaje en la Isla San Andrés. Universidad Nacional de Colombia.; Ortiz, J. C., Plazas, J. M., & Lizano, O. (2015). Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andrés Island in the Caribbean Sea since 1900. Journal of Coastal Research, 313(Figure 2), 557-568. https://doi.org/10.2112/jcoastres-d-14-00072.1; Ortiz Royero, J. C., Plazas, J. M., & Lizano, O. (2015). Evaluation of Extreme Waves Associated with Cyclonic Activity on San Andrés Island in the Caribbean Sea since 1900. Journal of Coastal Research, 31(3), 557-568. https://doi.org/10.2112/JCOASTRES-D-14-00072.1; Osorio, A. F., Montoya, R. D., Ortiz, J. C., & Peláez, D. (2016). Construction of synthetic ocean wave series along the Colombian Caribbean Coast: A wave climate analysis. Applied Ocean Research, 56, 119-131. https://doi.org/10.1016/j.apor.2016.01.004; Osorio, A. F., Santiago Peláez-Zapata, D., Guerrero-Gallego, J., Álvarez-Silva, O., David Osorio-Cano, J., Toro, F. M., & Giraldo, A. (2014). Hidrodinámica aplicada a la gestión y la conservación de ecosistemas marinos y costeros: Isla Gorgona, Océano Pacífico Colombiano. En Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 62).; Osorio-Cano, J. D., Alcérreca-Huerta, J. C., Osorio, A. F., & Oumeraci, H. (2018). CFD modelling of wave damping over a fringing reef in the Colombian Caribbean. Coral Reefs, 37(4), 1093-1108. https://doi.org/10.1007/s00338-018-1736-4; Pérez-Santos, I., Garcés-Vargas, J., Schneider, W., Ross, L., Parra, S., & Valle-Levinson, A. (2014). Double-diffusive layering and mixing in Patagonian fjords. https://doi.org/10.1016/j.pocean.2014.03.012; Piccolo, M. C. (2021). Chapter 12 - Effects of rainfall extreme events on coastal marine ecosystems. En J. Rodrigo-Comino (Ed.), Precipitation (pp. 261-285). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822699-5.00024-0; Piecuch, C. G., & Ponte, R. M. (2012). Buoyancy-driven interannual sea level changes in the southeast tropical Pacific. Geophysical Research Letters, 39(5). https://doi.org/10.1029/2012GL051130; Rey, W., Ruiz-Salcines, P., Salles, P., Urbano-Latorre, C. P., Escobar-Olaya, G., Osorio, A. F., Ramírez, J. P., Cabarcas-Mier, A., Jigena-Antelo, B., & Appendini, C. M. (2021). Hurricane Flood Hazard Assessment for the Archipelago of San Andres, Providencia and Santa Catalina, Colombia. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.766258; Ricaurte, C., Morales, D. F., Coca, O., Bastidad, M. L., & Romero, D. A. (2015). Erosión costera en la isla de san andrés informe técnico final. Invemar, 72.; Rogers, J. S., Monismith, S. G., Koweek, D. A., & Dunbar, R. B. (2016). Wave dynamics of a Pacific Atoll with high frictional effects. Journal of Geophysical Research: Oceans, 121, 350-367. https://doi.org/10.1002/jgrc.20224; Soliman, M. N., Guen, F. Z., Ahmed, S. A., Saleem, H., Khalil, M. J., & Zaidi, S. J. (2021). Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Safety and Environmental Protection, 147, 589-608. https://doi.org/10.1016/j.psep.2020.12.038; Spall, M. A. (2002). Wind- and buoyancy-forced upper ocean circulation in two-strait marginal seas with application to the Japan/East Sea. Journal of Geophysical Research: Oceans, 107(C1), 6-1. https://doi.org/10.1029/2001JC000966; Stevens, C., Ward, B., Law, C., & Walkington, M. (2010). Surface layer mixing during the SAGE ocean fertilization experiment. https://doi.org/10.1016/j.dsr2.2010.10.017; Sun, Z., Xu, D., Liu, X., Zhang, H., & Cai, Z. (2021). Observation and simulation of wind waves near a typical reef lagoon in South China Sea. Journal of Hydrodynamics, 33(1), 24-32. https://doi.org/10.1007/s42241-021-0010-3; Taebi, S., Lowe, R. J., Pattiaratchi, C. B., Ivey, G. N., & Symonds, G. (2012). A numerical study of the dynamics of the wave-driven circulation within a fringing reef system. Ocean Dynamics, 62(4), 585-602. https://doi.org/10.1007/s10236-011-0514-4; Telesford, J. N. (2021). Critiquing «islandness» as immunity to COVID-19: A case exploration of the Grenada, Carriacou and Petite Martinique archipelago in the Caribbean region. Island Studies Journal, 16(1), 308-324. https://doi.org/10.24043/isj.155; Thomas, Y. F., Nicolae-Lerma, A., & Posada, B. (2012). Atlas climatológico del Mar Caribe Colombiano. En Serie de Publicaciones especiales (Número 25).; Tippins, D., & Tomczak, M. (2003). Meridional Turner angles and density compensation in the upper ocean. Ocean Dynamics, 53(4), 332-342. https://doi.org/10.1007/s10236-003-0056-5; Troost, T. A., de Kluijver, A., & Los, F. J. (2014). Evaluation of eutrophication variables and thresholds in the Dutch North Sea in a historical context — A model analysis. Journal of Marine Systems, 134, 45-56. https://doi.org/https://doi.org/10.1016/j.jmarsys.2014.01.015; Valle-Levinson, A. (2022a). Introduction and Classification. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 5-7). Cambridge University Press. https://doi.org/10.1017/9781108974240.004; Valle-Levinson, A. (2022b). Tides in Semienclosed Basins. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 27-50). Cambridge University Press. https://doi.org/10.1017/9781108974240.004; Valle-Levinson, A. (2022c). Wind-Driven Flows in Homogeneous, Semienclosed Basins. En A. Valle-Levinson (Ed.), Introduction to Estuarine Hydrodynamics (pp. 84-97). Cambridge University Press. https://doi.org/10.1017/9781108974240.004; van der Boog, C. G., Dijkstra, H. A., Pietrzak, J. D., & Katsman, C. A. (2021). Double-diffusive mixing makes a small contribution to the global ocean circulation. Communications Earth & Environment, 2(1), 46. https://doi.org/10.1038/s43247-021-00113-x; Velásquez, C. (2020). The 2016 Water Crisis in San Andres Island: An Opportunity for Change? Ciencia Política, 15(29), 73-109. https://doi.org/10.15446/cp.v15n29.86373; Walstra, D. J. R., Roelvink, J. A., & Groeneweg, J. (2000). Calculation of Wave-Driven Currents in a 3D Mean Flow Model. Coastal Engineering, 1050-1063. https://doi.org/10.1061/40549(276)81; Winter, G., Van Dongeren, A., De Schipper, M., & Van Thiel De Vries, J. (2012). A FIELD AND NUMERICAL STUDY INTO RIP CURRENTS IN WIND-SEA DOMINATED ENVIRONMENTS. Coastal Engineering Proceedings, 1(33), currents.36. https://doi.org/10.9753/icce.v33.currents.36; Yamano, H., Kayanne, H., Yonekura, N., Nakamura, H., & Kudo, K. (1998). Water circulation in a fringing reef located in a monsoon area: Kabira Reef, Ishigaki Island, Southwest Japan. Coral Reefs, 17(1), 89-99. https://doi.org/10.1007/s003380050101; Yao, Y., Huang, Z., He, W., & Monismith, S. G. (2018). Wave-induced setup and wave-driven current over Quasi-2DH reef-lagoon-channel systems. Coastal Engineering, 138, 113-125. https://doi.org/https://doi.org/10.1016/j.coastaleng.2018.04.009; Yao, Y., Liu, Y., Chen, L., Deng, Z., & Jiang, C. (2020). Study on the wave-driven current around the surf zone over fringing reefs. https://doi.org/10.1016/j.oceaneng.2020.106968; You, Y. (2002). A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure. En Deep-Sea Research I (Vol. 49).; Zea, S., Geister, J., Garzon-Ferreira, J., & Diaz, J. M. (1998). Biotic changes in the reef complex of San Andres Island (Southeastern Caribbean Sea, Columbia) occuring over three decades. Atoll Research Bulletin, 456(456), 1-30. https://doi.org/10.5479/si.00775630.456.1; Zheng, J., Yao, Y., Chen, S., Chen, S., & Zhang, Q. (2020). Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system. https://doi.org/10.1016/j.coastaleng.2020.103772; https://repositorio.unal.edu.co/handle/unal/85049; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
- Online Access: https://repositorio.unal.edu.co/handle/unal/85049
https://repositorio.unal.edu.co/ - Rights: Atribución-NoComercial-SinDerivadas 4.0 Internacional ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/openAccess
- Accession Number: edsbas.9867DDCF
- Contributors:

Copyright © Department of Culture and Tourism, all rights reserved.
Copyright © 2024 Department of Culture and Tourism, all rights reserved. Powered By EBSCO Stacks 3.3.0 [353] | Staff Login
No Comments.