Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Cost-Sensitive Cosine Similarity K-Nearest Neighbor for Credit Card Fraud Detection

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Base de Données (BD); Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS); Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Lumière - Lyon 2 (UL2)-École Centrale de Lyon (ECL); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS); Cognitus; Données et algorithmes pour une ville intelligente et durable - DAVID (DAVID); Université de Versailles Saint-Quentin-en-Yvelines (UVSQ); الجامعة اللبنانية بيروت = Lebanese University Beirut = Université libanaise Beyrouth (LU / ULB)
    • Publication Information:
      HAL CCSD
    • Publication Date:
      2018
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • Subject Terms:
    • Abstract:
      International audience ; Credit card fraud commonly happens in financial institutes such as banks. Fraud results in a huge financial damage that may reach to billions of dollars every year. Detecting and preventing credit card fraud manually is a labor intensive and relatively ineffective approach. Therefore, a significant effort was made to develop automated solutions for fraud detection. Researchers dedicated their works on designing and developing models and systems in particular, the fraud anlaysis systems that enable to detect different types of fraud in different sectors including insurance, telecommunication, financial audit, financial markets, money laundering, credit card, etc. However, some problems remains unsolved. Of all, the most prevalent one is the extreme class imbalance. In this paper, we aimed at addressing this problem. We focused on the K-Nearest Neighbor (KNN) classifier and investigated the cost-sensitive approaches used for KNN. Also, we presented a novel cost-sensitive KNN approach that we developed using Cosine Similarity (CoS). We compared our model with the other methods to verify its efficiency, and we proved using several performance measures that it's a better approach than other KNN algorithms.
    • Relation:
      hal-02353075; https://hal.science/hal-02353075; https://hal.science/hal-02353075/document; https://hal.science/hal-02353075/file/paper10.pdf
    • Online Access:
      https://hal.science/hal-02353075
      https://hal.science/hal-02353075/document
      https://hal.science/hal-02353075/file/paper10.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.9C0310A1