Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Collective Matrix Completion

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Modélisation aléatoire de Paris X (MODAL'X); Université Paris Nanterre (UPN)-Centre National de la Recherche Scientifique (CNRS); Centre de Recherche en Économie et Statistique (CREST); Ecole Nationale de la Statistique et de l'Analyse de l'Information Bruz (ENSAI); Groupe des Écoles Nationales d'Économie et Statistique (GENES)-Groupe des Écoles Nationales d'Économie et Statistique (GENES)-École polytechnique (X); Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École Nationale de la Statistique et de l'Administration Économique (ENSAE Paris); Groupe des Écoles Nationales d'Économie et Statistique (GENES)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS); ESSEC Business School; This work was supported by grants from DIM Math Innov Région Ile-de-France.
    • Publication Information:
      CCSD
      Microtome Publishing
    • Publication Date:
      2019
    • Collection:
      Université Paris Lumières: HAL
    • Abstract:
      International audience ; Matrix completion aims to reconstruct a data matrix based on observations of a small number of its entries. Usually in matrix completion a single matrix is considered, which can be, for example, a rating matrix in recommendation system. However, in practical situations, data is often obtained from multiple sources which results in a collection of matrices rather than a single one. In this work, we consider the problem of collective matrix completion with multiple and heterogeneous matrices, which can be count, binary, continuous, etc. We first investigate the setting where, for each source, the matrix entries are sampled from an exponential family distribution. Then, we relax the assumption of exponential family distribution for the noise and we investigate the distribution-free case. In this setting, we do not assume any specific model for the observations. The estimation procedures are based on minimizing the sum of a goodness-of-fit term and the nuclear norm penalization of the whole collective matrix. We prove that the proposed estimators achieve fast rates of convergence under the two considered settings and we corroborate our results with numerical experiments.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/1807.09010; ARXIV: 1807.09010
    • Online Access:
      https://hal.science/hal-01846078
      https://hal.science/hal-01846078v2/document
      https://hal.science/hal-01846078v2/file/alayaklopp%28v2%29.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.AB787413