Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Running minimum in the best-choice problem

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Wroclaw University of Science and Technology; Combinatorics, Optimization and Algorithms for Telecommunications (COATI); Centre Inria d'Université Côte d'Azur; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED); Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S); Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA); Queen Mary University of London (QMUL)
    • Publication Information:
      CCSD
      Springer Verlag (Germany)
    • Publication Date:
      2022
    • Collection:
      HAL Université Côte d'Azur
    • Abstract:
      22 pages, 9 figures ; International audience ; We consider the best-choice problem for independent (not necessarily iid) observations $X_1, \cdots, X_n$ with the aim of selecting the sample minimum. We show that in this full generality the monotone case of optimal stopping holds and the stopping domain may be defined by the sequence of monotone thresholds. In the iid case we get the universal lower bounds for the success probability. We cast the general problem with independent observations as a variational first-passage problem for the running minimum process which simplifies obtaining the formula for success probability. We illustrate this approach by revisiting the full-information game (where $X_j$'s are iid uniform-$[0,1]$), in particular deriving new representations for the success probability and its limit by $n \rightarrow \infty$. Two explicitly solvable models with discrete $X_j$'s are presented: in the first the distribution is uniform on $\{j,\cdots,n\}$, and in the second the distribution is uniform on $\{1,\cdots, n\}$. These examples are chosen to contrast two situations where the ties vanish or persist in the large-$n$ Poisson limit.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2110.05338; ARXIV: 2110.05338
    • Accession Number:
      10.1007/s10687-022-00457-3
    • Online Access:
      https://hal.science/hal-03462375
      https://hal.science/hal-03462375v1/document
      https://hal.science/hal-03462375v1/file/HittingTimes.pdf
      https://doi.org/10.1007/s10687-022-00457-3
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.AD51C87C