Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Dispositivo de asistencia a la rehabilitación musculo-esquelética de rodilla ; Device for assisting rehabilitation of the knee skeletal muscle

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Duque Méndez, Néstor Darío; Gaia Grupo de Ambientes Inteligentes Adaptativos
    • Publication Information:
      Universidad Nacional de Colombia
      Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial
      Departamento de Ingeniería Eléctrica y Electrónica
      Facultad de Ingeniería y Arquitectura
      Manizales, Colombia
      Universidad Nacional de Colombia - Nivel Nacional
    • Publication Date:
      2022
    • Abstract:
      gráficos, tablas ; La respuesta de los músculos en el movimiento durante actividades de la vida diaria y algunas de sus características ---fuerza, agilidad y resistencia--- pueden verse afectadas luego de una lesión, enfermedad o cirugía. Esas alteraciones no tienen tratamiento médico y la rehabilitación es la única opción para devolver la funcionalidad en las extremidades. El profesional de la salud debe establecer un plan de rehabilitación teniendo en cuenta las dimensiones biológica, social y psicológica del paciente, de acuerdo con la ICF. Como parte del plan, debe ser cuantificado frecuentemente el impacto de la terapia en la funcionalidad, determinando progreso o retroceso. Aunque la APTA establece la necesidad de medir la evolución del paciente, la evolución se establece por observación directa del profesional de la salud usualmente, considerando rangos y velocidad de movimiento y dolor percibido. Sin embargo, algunas sesiones se realizan en casa, lo que dificulta el seguimiento del paciente y cuantificar el impacto del plan de rehabilitación. Esta situación se acentúa cuando el paciente no tiene acceso directo a profesionales de la salud debido al lugar donde vive. En este trabajo se desarrolla un dispositivo para asistir la rehabilitación de rodilla. Para tal fin, se desarrolla un sistema de medida inercial y un módulo para la medición de las señales de electromiografía. Aunque en la literatura especializada se pueden encontrar desarrollos que buscan asistir la terapia física, algunos requieren de equipos especializados y no pueden ser usados en casa. Por otro lado, los desarrollos propuestos para ser aplicados en ese entorno carecen de módulos para la evolución del desempeño muscular. Esta medida es valiosa para los terapeutas para establecer cambios en el plan de rehabilitación. Como resultados se presenta el desarrollo de un dispositivo con una baja relación costo-efectividad. Entre los resultados se encuentra el desarrollo de un soporte con el que se busca mejorar la repetibilidad en la ubicación de ...
    • File Description:
      xix, 46 páginas; application/pdf
    • Relation:
      Y. Ma, S. Xie, and Y. Zhang, “A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots,” Computers in Biology and Medicine, vol. 70, pp. 88–98, mar 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0010482516000056; American Physical Therapy Organization, “Guide to physical therapist practice Measurement Concepts,” in Guide to Physical Therapist Practice, 2016, ch. Measurement.; A. Rauch, A. Cieza, and G. Stucki, “How to apply the ICF for rehabilitation management in clinical practice.pdf,” vol. 44, no. 3, pp. 329–342, 2008. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/18762742/; Organización Mundial de la Salud, “Towards a common language for functioning, disability and health: ICF,” International Classification, vol. 1149, pp. 1–22, 2002. [Online]. Available: http://www.who.int/classifications/icf/training/icfbeginnersguide.pdf; D. Wade, “Rehabilitation - A new approach. Part two: The underlying theories,” pp.1145–1154, dec 2015.; L. M. Tapias, “Factores individuales que influyen en la adherencia al tratamiento fisioterapéutico,” vol. 2, no. 1, pp. 23–30, 2014.; K. Jack, S. M. McLean, J. K. Moffett, and E. Gardiner, “Barriers to treatment adherence in physiotherapy outpatient clinics: A systematic review,” Manual Therapy, vol. 15, no. 3, pp. 220–228, jun 2010. [Online]. Available: http://dx.doi.org/10.1016/j.math.2009.12.004https://linkinghub.elsevier.com/retrieve/pii/S1356689X09002094; World Health Organization, Adherence to long-term therapies: evidence for action, World Health Organization (WHO), Ed., 2003. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/42682/9241545992.pdf; G. S. Kolt, B. W. Brewer, T. Pizzari, A. M. Schoo, and N. Garrett, “The Sport Injury Rehabilitation Adherence Scale: a reliable scale for use in clinical physiotherapy,” Physiotherapy, vol. 93, no. 1, pp. 17–22, 2007.; J. A. Hayden, M. W. van Tulder, and G. Tomlinson, “Systematic Review: Strategies for Using Exercise Therapy To Improve Outcomes in Chronic Low Back Pain,” Annals of Internal Medicine, vol. 142, no. 9, p. 776, may 2005. [Online]. Available: http://annals.org/article.aspx?doi=10.7326/0003-4819-142-9-200505030-00014; L. M. Vasey, “DNAs and DNCTs — Why Do Patients Fail to Begin or to Complete a Course of Physiotherapy Treatment?” Physiotherapy, vol. 76, no. 9, pp. 575–578, sep 1990. [Online]. Available: http://dx.doi.org/10.1016/S0031-9406(10)63052-0https://linkinghub.elsevier.com/retrieve/pii/S0031940610630520; E. M. Sluijs, G. J. Kok, and J. van der Zee, “Correlates of Exercise Compliance in Physical Therapy,” Physical Therapy, vol. 73, no. 11, pp. 771–782, nov 1993. [Online]. Available: http://ptjournal.apta.org/content/ptjournal/73/11/771.full.pdfhttps://academic.oup.com/ptj/article/2729054/Correlates; A. D. Lopes, L. C. Hespanhol, S. S. Yeung, and L. O. P. Costa, “What are the Main Running-Related Musculoskeletal Injuries?” Sports Medicine, vol. 42, no. 10, pp. 891–905, oct 2012. [Online]. Available: /pmc/articles/PMC4269925/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4269925/http://link.springer.com/10.1007/BF03262301; C. M. Gosling, B. J. Gabbe, and A. B. Forbes, “Triathlon related musculoskeletal injuries: The status of injury prevention knowledge,” Journal of Science and Medicine in Sport, vol. 11, no. 4, pp. 396–406, jul 2008. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1440244007001545; R. Castillo-Lozano and M. J. Casuso-Holgado, “Incidence of musculoskeletal sport injuries in a sample of male and female recreational paddle-tennis players,” Journal of Sports Medicine and Physical Fitness, vol. 57, no. 6, pp. 816–821, jun 2017. [Online].Available: https://pubmed.ncbi.nlm.nih.gov/26954572/; V. Moreno-Pérez, S. Hernández-Sánchez, J. Fernandez-Fernandez, J. Del Coso, and F. J. Vera-Garcia, “Incidence and conditions of musculoskeletal injuries in elite Spanish tennis academies: a prospective study,” The Journal of Sports Medicine and Physical Fitness, vol. 59, no. 4, pp. 655–665, mar 2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29952177/https://www.minervamedica.it/index2.php?show=R40Y2019N04A0655; B. D. Owens, C. Nacca, A. P. Harris, and R. J. Feller, “Comprehensive Review of Skiing and Snowboarding Injuries,” Journal of the American Academy of Orthopaedic Surgeons, vol. 26, no. 1, pp. e1–e10, jan 2018. [Online]. Available: http://journals.lww.com/00124635-201801010-00004; M. Bulat, N. Korkmaz Can, Y. Z. Arslan, and W. Herzog, “Musculoskeletal Simulation Tools for Understanding Mechanisms of Lower-Limb Sports Injuries,” Current Sports Medicine Reports, vol. 18, no. 6, pp. 210–216, jun 2019. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31385836/http://journals.lww.com/00149619-201906000-00006; N. A. Bates, G. D. Myer, J. T. Shearn, and T. E. Hewett, “Anterior cruciate ligament biomechanics during robotic and mechanical simulations of physiologic and clinical motion tasks: A systematic review and meta-analysis,” Clinical Biomechanics, vol. 30, no. 1, pp. 1–13, jan 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/25547070/https://linkinghub.elsevier.com/retrieve/pii/S0268003314003015; L. Peng, Z.-G. Hou, L. Peng, and W.-Q. Wang, “Experimental study of robot-assisted exercise training for knee rehabilitation based on a practical EMG-driven model,” in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), vol. 2016-July. IEEE, jun 2016, pp. 810–814. [Online]. Available: http://ieeexplore.ieee.org/document/7523727/; P. Xiong, C. Wu, H. Zhou, A. Song, L. Hu, and X. P. Liu, “Design of an accurate end-of-arm force display system based on wearable arm gesture sensors and EMG sensors,” Information Fusion, vol. 39, pp. 178–185, jan 2018. [Online]. Available: http://dx.doi.org/10.1016/j.inffus.2017.04.009https: //linkinghub.elsevier.com/retrieve/pii/S1566253517302695; A. Shabani and M. J. Mahjoob, “Bio-signal interface for knee rehabilitation robot utilizing EMG signals of thigh muscles,” in 2016 4th International Conference on Robotics and Mechatronics (ICROM). IEEE, oct 2016, pp. 228–233. [Online]. Available: http://ieeexplore.ieee.org/document/7886851/; J. Martin-Moreno, D. Ruiz-Fernandez, A. Soriano-Paya, and V. Jesus Berenguer-Miralles, “Monitoring 3D movements for the rehabilitation of joints in physiotherapy,” in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 300000. IEEE, aug 2008, pp. 4836–4839. [Online]. Available: https://ieeexplore.ieee.org/document/4650296/; H. Zheng, R. J. Davies, and N. D. Black, “Web-based monitoring system for home-based rehabilitation with stroke patients,” Proceedings - IEEE Symposium on Computer-Based Medical Systems, pp. 419–424, 2005.; Kathleen A. Martin and Adrienne R. Sinden, “Who Will Stay and Who Will Go? A Review of Older Adults’ Adherence to Randomized Controlled Trials of Exercise,” Aging and Physical Activity, vol. 9, no. 2, pp. 91–114, 2001.; T. Shaw, M. T. Williams, and L. S. Chipchase, “A review and user’s guide to measurement of rehabilitation adherence following anterior cruciate ligament reconstruction,” Physical Therapy in Sport, vol. 6, no. 1, pp. 45–51, feb 2005. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1466853X05000179; B. Wright, N. Galtieri, and M. Fell, “Non-adherence to prescribed home rehabilitation exercises for musculoskeletal injuries: The role of the patient-practitioner relationship,” Journal of Rehabilitation Medicine, vol. 46, no. 2, pp. 153–158, 2014. [Online]. Available: http://www.medicaljournals.se/jrm/content/?doi=10.2340/16501977-1241; J. E. Broderick and A. A. Stone, “Paper and electronic diaries: Too early for conclusions on compliance rates and their effects–Comment on Green, Rafaeli, Bolger, Shrout, and Reis (2006).” Psychological Methods, vol. 11, no. 1, pp. 106–111, mar 2006. [Online]. Available: http://doi.apa.org/getdoi.cfm?doi=10.1037/1082-989X.11.1.106; A. S. Green, E. Rafaeli, N. Bolger, P. E. Shrout, and H. T. Reis, “Paper or plastic? Data equivalence in paper and electronic diaries.” Psychological Methods, vol. 11, no. 1, pp. 87–105, mar 2006. [Online]. Available: http: //doi.apa.org/getdoi.cfm?doi=10.1037/1082-989X.11.1.87; M. Friedrich, G. Gittler, Y. Halberstadt, T. Cermak, and I. Heiller, “Combined exercise and motivation program: Effect on the compliance and level of disability of patients with chronic low back pain: A randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 79, no. 5, pp. 475–487, may 1998. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0003999398900594; Seniam, “Seniam project,” 2018. [Online]. Available: http://www.seniam.org/; Y. Ganesan, S. Gobee, and V. Durairajah, “Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor,” Procedia Computer Science, vol. 76, pp. 53–59, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S187705091503776Xhttps://linkinghub.elsevier.com/retrieve/pii/S187705091503776X; M. Hakonen, H. Piitulainen, and A. Visala, “Current state of digital signal processing in myoelectric interfaces and related applications,” Biomedical Signal Processing and Control, vol. 18, pp. 334–359, apr 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S174680941500021Xhttps://linkinghub.elsevier.com/retrieve/pii/S174680941500021X; M. Lopez-Gordo, D. Sanchez-Morillo, and F. Valle, “Dry EEG Electrodes”, Sensors, vol. 14, no. 7, pp. 12 847–12 870, jul 2014. [Online]. Available: http://www.mdpi.com/1424-8220/14/7/12847; K. Vlach, J. Kijonka, F. Jurek, P. Vavra, and P. Zonca, “Capacitive biopotential electrode with a ceramic dielectric layer,” Sensors and Actuators B: Chemical, vol. 245, pp.988–995, jun 2017. [Online]. Available: http://dx.doi.org/10.1016/j.snb.2017.01.116https://linkinghub.elsevier.com/retrieve/pii/S0925400517301235; E. Spinelli and M. Haberman, “Insulating electrodes: a review on biopotential front ends for dielectric skin–electrode interfaces,” Physiological Measurement, vol. 31, no. 10, pp. S183–S198, oct 2010. [Online]. Available: https://iopscience.iop.org/article/10.1088/0967-3334/31/10/S03; E. Spinelli, F. Guerrero, P. García, and M. Haberman, “A simple and reproducible capacitive electrode,” Medical Engineering & Physics, vol. 38, no. 3, pp. 286–289, mar 2016. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1350453315002854; B. Babusiak, S. Borik, and L. Balogova, “Textile electrodes in capacitive signal sensing applications,” Measurement, vol. 114, no. March 2017, pp. 69–77, jan 2018. [Online]. Available: http://dx.doi.org/10.1016/j.measurement.2017.09.024https://linkinghub.elsevier.com/retrieve/pii/S0263224117305894; C. Ng and M. Reaz, “Characterization of Textile-Insulated Capacitive Biosensors,” Sensors, vol. 17, no. 3, p. 574, mar 2017. [Online]. Available: http://www.mdpi.com/1424-8220/17/3/574; T. Seel, J. Raisch, and T. Schauer, “IMU-based joint angle measurement for gait analysis,” Sensors (Switzerland), vol. 14, no. 4, pp. 6891–6909, apr 2014.; M. Kok, J. D. Hol, and T. B. Schön, “Using inertial sensors for position and orientation estimation,” Foundations and Trends in Signal Processing, vol. 11, no. 1-2, pp. 1–153, 2017.; T. Roland, S. Amsüss, M. F. Russold, C. Wolf, and W. Baumgartner, “Capacitive Sensing of Surface EMG for Upper Limb Prostheses Control,” Procedia Engineering, vol. 168, pp. 155–158, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.proeng.2016.11.190https://linkinghub.elsevier.com/retrieve/pii/S1877705816335007; M. Tavakoli, C. Benussi, and J. L. Lourenco, “Single channel surface EMG control of advanced prosthetic hands: A simple, low cost and efficient approach,” Expert Systems with Applications, vol. 79, pp. 322–332, 2017.; J. Poonsiri and W. Charoensuk, “Surface EMG based controller design for knee rehabilitation devices,” BMEiCON-2011 - 4th Biomedical Engineering International Conference, pp. 131–134, 2011.; I. Campanini, C. Disselhorst-Klug, W. Z. Rymer, and R. Merletti, “Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use,” Frontiers in Neurology, vol. 11, sep 2020. [Online]. Available: https://www.frontiersin.org/article/10.3389/fneur.2020.00934/full; T. Roland, W. Baumgartner, S. Amsuess, and M. Friedrich Russold, “Signal evaluation of capacitive EMG for upper limb prostheses control using an ultra-low-power microcontroller,” in 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2016, pp. 317–320.; L. E. Avendaño, Sistemas Electrónicos Analógicos: Un enfoque matricial, 1st ed. Pereira: Universidad Tecnológica de Pereira, 2007.; E. Mora Tola, J. Loja Duchi, A. Vázquez Rodas, F. Astudillo Salinas, and L. Minchala, “Robotic Knee Exoskeleton Prototype to Assist Patients in Gait rehabilitation,” Tech. Rep. 9, 2020.; F. Dadashi, F. Crettenand, G. P. Millet, and K. Aminian, “Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit,” Sensors (Switzerland), vol. 12, no. 10, pp. 12 927–12 939, 2012.; C. A. Castillo-Benavides, L. F. García-Arias, N. . D. Duque-Méndez, and D. A. Ovalle-Carranza, “IMU-Mouse: diseño e implementación de un dispositivo apuntador dirigido al desarrollo de interfaces adaptativas para personas con discapacidad física,” TecnoLógicas, vol. 21, no. 41, pp. 63–79, jan 2018. [Online]. Available: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/727; A. Oppenheim and R. Schafer, Discrete-Time Processing- Second Edition, 2nd ed. Prentice Hall, 1999.; L. Marple, “Computing the discrete-time .analytic"signal via FFT,” IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2600–2603, 1999. [Online]. Available: papers3://publication/uuid/C7BC1B03-B80D-43D5-A544-6534B085DEE1http://ieeexplore.ieee.org/document/782222/; K. Englehart, B. Hudgins, P. Parker, and M. Stevenson, “Classification of the myoelectric signal using time-frequency based representations,” Medical Engineering & Physics, vol. 21, no. 6-7, pp. 431–438, jul 1999. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1350453399000661; K. Englehart, B. Hudgin, and P. Parker, “A wavelet-based continuous classification scheme for multifunction myoelectric control,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 3, pp. 302–311, mar 2001. [Online]. Available: http://ieeexplore.ieee.org/document/914793/; Y. Meng, S. Gao, Y. Zhong, G. Hu, and A. Subic, “Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration,” Acta Astronautica, vol. 120, pp. 171–181, mar 2016.; J. A. George, S. Radhakrishnan, M. Brinton, and G. A. Clark, “Inexpensive and Portable System for Dexterous High-Density Myoelectric Control of Multiarticulate Prostheses,” Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, vol. 2020-Octob, no. January, pp. 3441–3446, 2020.; https://repositorio.unal.edu.co/handle/unal/82223; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
    • Online Access:
      https://repositorio.unal.edu.co/handle/unal/82223
      https://repositorio.unal.edu.co/
    • Rights:
      Atribución-NoComercial 4.0 Internacional ; http://creativecommons.org/licenses/by-nc/4.0/ ; info:eu-repo/semantics/openAccess
    • Accession Number:
      edsbas.B0BB7F80