Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Exponential stability for nonautonomous functional differential equations with state-dependent delay

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      American Institute of Mathematical Sciences
    • Publication Date:
      2017
    • Collection:
      UVaDOC - Repositorio Documental de la Universidad de Valladolid
    • Abstract:
      The properties of stability of a compact set $K$ which is positively invariant for a semiflow $(\W\times W^{1,\infty}([-r,0],\mathbb{R}^n),\Pi,\mathbb{R}^+)$ determined by a family of nonautonomous FDEs with state-dependent delay taking values in $[0,r]$ are analyzed. The solutions of the variational equation through the orbits of $K$ induce linear skew-product semiflows on the bundles $K\times W^{1,\infty}([-r,0],\mathbb{R}^n)$ and $\mK\times C([-r,0],\mathbb{R}^n)$. The coincidence of the upper-Lyapunov exponents for both semiflows is checked, and it is a fundamental tool to prove that the strictly negative character of this upper-Lyapunov exponent is equivalent to the exponential stability of $K$ in $\W\times W^{1,\infty}([-r,0],\mathbb{R}^n)$ and also to the exponential stability of this compact set when the supremum norm is taken in $W^{1,\infty}([-r,0],\mathbb{R}^n)$. In particular, the existence of a uniformly exponentially stable solution of a uniformly almost periodic FDE ensures the existence of exponentially stable almost periodic solutions. ; Ministerio de Economía, Industria y Competitividad (MTM2015-66330-P)
    • File Description:
      application/pdf
    • Relation:
      info:eu-repo/grantAgreement/EC/H2020/643073; https://doi.org/10.3934/dcdsb.2017169; http://uvadoc.uva.es/handle/10324/25759
    • Accession Number:
      10.3934/dcdsb.2017169
    • Online Access:
      http://uvadoc.uva.es/handle/10324/25759
      https://doi.org/10.3934/dcdsb.2017169
    • Rights:
      info:eu-repo/semantics/openAccess
    • Accession Number:
      edsbas.C2497778