Contributors: Génétique des Biofilms - Genetics of Biofilms; Université Paris Cité (UPCité)-Microbiologie Intégrative et Moléculaire (UMR6047); Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS); Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC); Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS); Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo); Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME); Institut de Chimie - CNRS Chimie (INC-CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS); Systèmes transmembranaires bactériens - Bacterial transmembrane systems; Institut Pasteur Paris (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité); Bactériophage, bactérie, hôte - Bacteriophage, bacterium, host; This work was supported by grants from the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases (Grant No. ANR-10-LABX-62- IBEID) and the Fondation pour la Recherche Médicale (Grant No. DEQ20180339185). Y. C. was supported by a MENESR (Ministère Français de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche) fellowship. The authors thank the Spectroscopy and Microscopy Service Facility (SMI) of LCPME (https://www.lcpme.ul.cnrs.fr/equipe- ments/smi/) where AFM and infrared experiments were performed. This work was partly carried out using resources from the Pôle de Compétences en Physico-Chimie de l’Environnement, ANATELo, LIEC laboratory, UMR 7360 CNRS – Université de Lorraine and the HPC Core Facility of the Institut Pasteur.; ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010)
Abstract: International audience ; The ability of bacteria to interact with their environment is crucial to form aggregates and biofilms, and develop a collective stress resistance behavior. Despite its environmental and medical importance, bacterial aggregation is poorly understood and mediated by few known adhesion structures. Here, we identified a new role for a surface-exposed Escherichia coli protein, YfaL, which can self-recognize and induce bacterial autoaggregation. This process occurs only under acidic conditions generated during E. coli growth in the presence of fermentable sugars. These findings were supported by electrokinetic and atomic force spectroscopy measurements, which revealed changes in the electrostatic, hydrophobic, and structural properties of YfaL-decorated cell surface upon sugar consumption. Furthermore, YfaL-mediated autoaggregation promotes biofilm formation and enhances E. coli resistance to acid stress. The prevalence and conservation of YfaL in environmental and clinical E. coli suggest strong evolutionary selection for its function inside or outside the host. Overall, our results emphasize the importance of environmental parameters such as low pH as physicochemical cues influencing bacterial adhesion and aggregation, affecting E. coli and potentially other bacteria's resistance to environmental stress.
No Comments.