Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Strain analysis of SiGe layers on SOI: A tip-enhanced Raman spectroscopy approach for accurate germanium and strain percentage determination

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Università degli Studi di Roma "La Sapienza" = Sapienza University Rome (UNIROMA); Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI); Direction de Recherche Technologique (CEA) (DRT (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); Département Plate-Forme Technologique (DPFT); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
    • Publication Information:
      CCSD
    • Publication Date:
      2024
    • Collection:
      HAL-CEA (Commissariat à l'énergie atomique et aux énergies alternatives)
    • Subject Terms:
    • Abstract:
      International audience ; In recent years, strained silicon technologies have emerged as a key avenue in semiconductor research, offering a promising way to improve device performance. Among the key players in this field is the integration of silicon-germanium (SiGe) layers onto silicon substrates, which are strategically designed to induce strain and subsequently increase the overall efficiency of strained silicon devices [1].In this work, through a weighted comparison of Raman spectroscopy and high-resolution X-ray diffraction (HR-XRD) measurements with Tip-Enhanced Raman Spectroscopy (TERS) [2] measurements obtained on SiGe changes on SOI at different concentrations and thicknesses, a model was extracted that allows the simultaneous measurement of the percentage of Ge and strain present in nanometric volumes [3]. Furthermore, also the innovative titanium nitride (TiN) AFM probe [4], which allows clean room implementation for in-line characterisation, was used.The results highlight TERS as a powerful tool for monitoring the quality of semiconductor production lines, with unprecedented resolution and speed.
    • Online Access:
      https://cea.hal.science/cea-04770506
      https://cea.hal.science/cea-04770506v1/document
      https://cea.hal.science/cea-04770506v1/file/ICORS_XXVIII_Abstract_Template_2024_Blanket.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.CCB2C006