Abstract: Utvikling av ny sekvenseringsteknologi de to siste tiårene har tillatt dypere dykk ned i de biomolekylære aspektene ved menneskets oppskrift. Hel-genom data fra flere hundre tusen mennesker er allerede tilgjengelig, men hvordan den økende mengden informasjon kan settes sammen til meningsfull funksjonell tolkning er komplisert og krever nye metoder. MikroRNA - mRNA interaksjoner utgjør et enormt genreguleringsnettverk som er vanskelig å predikere, selv for dagens beste maskinlæringsalgoritmer(1). Disse ikke-kodende elementene er involvert i omtrent alle cellulære prosesser i mennesket, primært via delvis komplementær baseparing mellom mikroRNA og mRNA, men det er mye vi ikke forstår av dette nettverkets betydning i vår biologi (2-4). Nye metoder er nødvendige for å kunne utforske genetisk variasjon i dette nettverket, som kan gi nye innblikk i hvordan genene våre reguleres. Her presenteres «The Group Diversity Ratio» (GDR) som en ny målenhet til å møte denne utfordringen. GDR kan kvantifisere evolusjonær struktur av variasjon i store mengder genomisk sekvensdata, med et resultat som kan statistisk valideres. Metoden baserer seg på å måle gruppe-struktur i et distanse-basert fylogenetisk tre av sekvensdata, for forhåndsdefinerte grupper av «blader» i treet. Gruppene representerer en egenskap som kan relateres til sekvensdataen, og det undersøkes til hvilken grad det finnes en sammenheng mellom de to. Metoden kan primært brukes til å raskt skaffe overblikk over store mengder genomisk sekvensdata, som kan gi verdifulle innblikk til videre etterforskning. For å teste metoden ble GDR brukt til å identifisere variasjon assosiert med etniske populasjoner i 3’UTR data fra «The 1000 Genomes Project» (1KGP). 1KGP var det første store prosjektet som adresserte den etniske skjevheten som nå finnes i genom-databaser, og som utgjør en god grunn til å utforske etnisk genetisk variasjon (5). I tillegg til identifikasjon av mer enn 1000 3’UTR sekvenser som inneholder signifikant etnisitet-spesifikk variasjon, viser dette studiet ...
No Comments.