Contributors: Algorithms, models and methods for images and signals of the human brain = Algorithmes, modèles et méthodes pour les images et les signaux du cerveau humain ICM Paris (ARAMIS); Inria de Paris; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut du Cerveau = Paris Brain Institute (ICM); Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS); Institut du Cerveau = Paris Brain Institute (ICM); Dynamics, Logics and Inference for biological Systems and Sequences (Dyliss); Inria Rennes – Bretagne Atlantique; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-GESTION DES DONNÉES ET DE LA CONNAISSANCE (IRISA-D7); Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); CHU Pitié-Salpêtrière AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU); École Pratique des Hautes Études (EPHE); Université Paris Sciences et Lettres (PSL); Equipe Fonctions et dysfonctions de systèmes frontaux ICM Paris (FRONTlab); ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019); ANR-10-IAHU-0006,IHU-A-ICM,Institut de Neurosciences Translationnelles de Paris(2010); ANR-14-CE15-0016,PREV-DEMALS,Prédire pour prévenir les démences frontotemporales (DFT) et la sclérose latérale amyotrophique (SLA)(2014)
Abstract: International audience ; Frontotemporal dementia (FTD) is a rare neurodegenerative disease, often of genetic origin, with no effective treatment. There is a substantial pathophysiological overlap with amyotrophic lateral sclerosis (ALS), mutations in the C9orf72 gene being their most common genetic cause. In these disorders, no single biomarker can accurately measure progression, thus it is crucial to combine complementary information from multiple modalities to evaluate new therapeutic interventions. In particular, neuroimaging and transcriptomic (microRNA) data have been shown to have value to track FTD and ALS progression. As these conditions are rare, large samples are not available, hence the need for methods to fuse multimodal data from small samples. In this paper, we propose a method for computing a disease progression score (DPS) from cross-sectional multimodal data, based on variational autoencoders (VAE). We show that unsupervised training leads to the estimation of meaningful latent spaces, where subjects with similar disease states are clustered together and from which a DPS may be inferred. Models were evaluated on 14 patients, 40 presymptomatic mutation carriers and 37 healthy controls from the PREV-DEMALS study. Since there is no ground truth for the DPS, we used the inferred scores to perform pairwise classification as a proxy metric. Presymptomatic subjects and patients were classified with an average area under the ROC curve of 0.83 and 0.94, respectively without and with feature selection. The proposed approach has the potential to leverage cross-sectional multimodal datasets with small sample sizes in order to objectively measure disease progression.
No Comments.