Abstract: Cancer cells, including leukemic cells, can react to therapeutic treatment by altering their metabolic phenotype (“metabolic reprogramming”) to keep their accelerated proliferative state, eventually becoming resistant to the treatment. There is an increasing amount of evidence indicating that metabolic reprogramming is one of the key mechanisms of acquisition of drug resistance by cancer cells. In agreement, several metabolic studies targeting leukaemia and specifically acute myeloid leukaemia (AML) and chronic myeloid leukaemia (CML), have been conducted over the last decades. However, there is still a lack of understanding the metabolic features of both AML and CML leukaemia specially in the acquisition of drug resistance, that is needed for unveiling novel and effective treatments for resistant and non-resistant patients. Therefore, the main objective of this thesis was to investigate the rewiring of cell metabolism occurring in the process of acquisition of resistance to conventional therapeutic treatments in AML and CML malignancies. Next, by revealing this metabolic rewiring, we intended to highlight potential metabolic and non-metabolic targets that could be exploited to overcome resistance to treatments. To this end, we have performed a comprehensive and comparative multi-OMIC study to analyse the links between the metabolic reprogramming and the resistance acquisition of THP-1 and HL-60 AML cell models sensitive or resistant to cytarabine (AraC) and doxorubicin (Dox), and of KU812 CML cell model sensitive or resistant to imatinib, all under normoxic (21% O2) and hypoxic (1% O2) conditions. The results of this thesis are divided into two chapters. On the one hand, in Chapter 1, the multi-OMIC study performed in AML parental and resistant cells unveiled that the acquisition of AraC resistance causes the reprogramming of the glucose metabolism of THP-1 and HL-60 cells by increasing the glycolytic flux whereas it is not associated with an alteration in the mitochondrial respiration. Moreover, our results ...
No Comments.