Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Impact of Biomechanical, Anthropometric, and Temporal Factors on the Return-to-Sport Rate in Recreational Athletes with ACL Reconstruction: A Cross-Sectional Observational Study

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Multidisciplinary Digital Publishing Institute
    • Publication Date:
      2025
    • Collection:
      MDPI Open Access Publishing
    • Abstract:
      Background/Objectives: Anterior cruciate ligament reconstruction (ACLR) necessitates evidence-based rehabilitation strategies to optimize return-to-sport (RTS) outcomes, yet persistent re-injury rates and suboptimal performance persist despite standardized protocols. The purpose of this cross-sectional observational study is to examine the relationship between biomechanical, anthropometric, and temporal factors and return-to-sport outcomes. Methods: This cross-sectional study identifies biomechanical, anthropometric, and temporal determinants of RTS readiness in 81 recreational athletes post-ACLR. Outcome measures included anterior (A-SLH), lateral (L-SLH), and medial (M-SLH) single-leg hop for distance, single-leg sit-to-stand (SLSS), single-leg wall-sit hold (SLWS), and ACL-RSI. Statistical analyses employed Spearman’s correlations and multiple linear regression to determine the predictors of ACL-RSI. Results: There were significant correlations between RSI and Limb Symmetry Index (LSI) for L-SLH, M-SLH, SLSS, and SLWS (r = 0.27, r = 0.30, r = 0.44, r = 0.34, and p < 0.01, respectively). Among the functional outcome measures, multiple linear regression revealed that only SLWS significantly predicted ACL-RSI (β = 0.248, p = 0.037). Also, body weight (β = −0.233, p = 0.030) and postoperative duration (β = 0.292, p = 0.006) significantly predicted ACL-RSI. Conclusions: These findings challenge the primacy of limb symmetry indices alone, emphasizing the role of weight management, time-dependent neuromuscular adaptation, and multi-planar closed-chain strength in RTS decision-making. Clinically, rehabilitation frameworks should integrate personalized strategies targeting body composition and dynamic stability to mitigate asymmetric joint loading and enhance functional resilience.
    • File Description:
      application/pdf
    • Relation:
      Public Health and Preventive Medicine; https://dx.doi.org/10.3390/healthcare13161970
    • Accession Number:
      10.3390/healthcare13161970
    • Online Access:
      https://doi.org/10.3390/healthcare13161970
    • Rights:
      https://creativecommons.org/licenses/by/4.0/
    • Accession Number:
      edsbas.D6DFCAE6