Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Semiparametrically Efficient Estimation of Regression Models with Spillovers

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Contributors:
      Lille économie management - UMR 9221 (LEM); Université d'Artois (UA)-Université catholique de Lille (UCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS); Université de Namur Namur (UNamur); Université libre de Bruxelles (ULB)
    • Publication Information:
      HAL CCSD
    • Publication Date:
      2024
    • Collection:
      Université d'Artois: HAL
    • Abstract:
      Regression models with spillover effects generally cannot be estimated using ordinaryleast squares given the simultaneity that results from interactions among individuals.Instead, they are fitted using two-stage least squares (Kelejian and Prucha,1998; Bramoull´e et al., 2009), generalized method of moments (Liu et al., 2010), (quasi-)maximum likelihood typically under the normality assumption (Lee, 2004) or adaptiveestimation (Robinson, 2010).In this article, we propose a semiparametrically efficient estimator, based on theLocal Asymptotic Normality theory of Le Cam (1960) and on the work of Hallin et al.(2006, 2008) on residuals ranks-and-signs, that only requires strong unimodality of theerrors’ distribution as a distributional assumption. Monte Carlo simulations show thatthe suggested estimator performs well in comparison to competing estimators. A traderegression from Behrens et al. (2012) is used to illustrate how empirical findings mightgreatly change when the Gaussian distribution is not imposed.
    • Relation:
      hal-04549707; https://hal.science/hal-04549707; https://hal.science/hal-04549707/document; https://hal.science/hal-04549707/file/Paper_DVV.pdf
    • Online Access:
      https://hal.science/hal-04549707
      https://hal.science/hal-04549707/document
      https://hal.science/hal-04549707/file/Paper_DVV.pdf
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • Accession Number:
      edsbas.DEDC114C